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The sequential filtering scheme provides a suitable framework for estimating and tracking geophysical states
of systems as new data become available online. Mathematical foundations of sequential Bayesian filtering
are reviewed with emphasis on practical issues for both particle filters and Kalman-based filters. In this
study, we further investigate the study of Kim (2005) such that the sequential Importance resampling method
(SIR), Ensemble Kalman Filter (EnKF), and the Maximum Entropy Filter (MEF) are tested in a relatively high
dimensional ocean model that conceptually represents the Atlantic thermohaline circulation. The model exhibits
large-amplitude transitions between strong (thermo-dominated) and weak (salinity-dominated) circulations that
represent climate states between ice-age and normal climate.

The performance of the particle-based schemes is compared with the convergent results from SIR based on
measurement errors, observation locations, and particle sizes in various sets of twin experiments. The sensitivity
analysis shows strength and weakness of each filtering method when applied to multimodal non-linear systems.
As the number of particles is increased, SIR achieves the convergent results that are mathematically optimal
solutions. EnKF shows suboptimal results regardless of sample sizes, and MEF achieves the optimal solution
even with a small sample size. Both EnKF, and MEF produces robust results with a relatively small sample size or
increased measurement locations. Small measurement errors or short intervals of observations (or, more frequent
observations) significantly improve the performances of SIR and EnKF, and MEF still show robust results even
with a relatively small sample size or sparse measurement locations when the system experiences the transition
between one region to the other region.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Filtering is the problem of estimating the state of a system by
assimilating into the system a set of observation available online.
Various filtering techniques have been developed in the past decade
partially due to the advances in theoretical signal processing and also
partially due to the rapid increase in computational power. These
methods are largely classified into the numerical sequential Monte Carlo
(SMC) methods such as sequential Importance resampling method (SIR,
[1,2]), and the Kalman framework, such as Ensemble Kalman filter
(EnKF, [3,4]) and Maximum Entropy filter (MEF, [5,6]). All variants
of such sequential Bayesian filters have been developed to perform
better than the other filters for particular sets of problems. And, they
are based on point-mass representation (called samples or particles) of
the state probability density function (pdf), and employ the discrete
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approximation of the nonlinear Bayesian filter. That is, in the filters, the
particles are integrated forward with the numerical model to propagate
the predictive state pdf in time, and their assigned weights or assumed
pdfs are updated whenever new observations are available.

The particle-based filters such as EnKF, and MEF have been explicitly
designed for high-dimensional problems in geophysics. They employ
fewer assumptions and require less computational cost. The filters have
been compared with nonlinear but mostly low dimensional systems [7].
The dimensionalities of the models are sometimes too small to reveal
characteristics of their performance. Kim [8] evaluates the performance
of those filters for an intermediate and conceptual ocean model that is
a high dimensional model with highly nonlinear transitions of ocean
states. The results are significant in that they show the advantages of
the filters when applied to a real-world model, but their results are
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rather preliminary as measurements are taken at only one location, and
measurement errors are fixed.

The preceding results of the performance for the particle-based filters
need to be qualitatively and quantitatively verified with the different
circumstances. The goal of this study is to evaluate the performance of
the particle-based filters on various circumstances such as measurement
frequency, measurement errors, and different measurement locations.
We employ the conceptual ocean model called the Stochastic Cessi–
Young (SCY) model [9]. The SCY model is a partial differential equation
that represents an idealized ocean of thermohaline circulation. This
model captures important features of climate changes, bimodality, and
abrupt transitions between the two modes. These features of the SCY
model can provide a good testbed for filtering methods in a high
dimensional nonlinear model. The SCY model is fastidious in either
analytical or statistical linearization, so the optimal solution to the
filtering problem can be obtained by the sequential importance resample
(SIR) method, which is well known to be mathematically a convergent
filtering scheme [10].

The paper is organized as follows. Section 2 describes the foun-
dations of sequential Bayesian filtering formulation and its optimal
solution. In Section 3, the formulations for the state estimation for a
convergent particle filter and the particle-based filters are presented. In
Section 4, the basic physical characteristics of an ocean thermohaline
circulation in the simulation are described followed by the discussion
of the performance of the filtering schemes and various sensitivity
analyses. The concluding remarks are given in Section 5.

2. Sequential Bayesian formulations

The state–space model is defined by the two equations as follows:

𝑥𝑡 = 𝑓𝑡
(

𝑥𝑡−1
)

+ 𝑣𝑡, (1)

𝑦𝑡 = ℎ𝑡
(

𝑥𝑡
)

+𝑤𝑡. (2)

The signal process (1) is called the state equation that describes the
state evolution of 𝑥𝑡 via a known function 𝑓𝑡. The observation process
(2) is called the measurement equation that represents the relationship
between the observations 𝑦𝑡 and the state vector 𝑥𝑡 through a known
(measurement) function ℎ𝑡. The noise vectors 𝑣𝑡, 𝑤𝑡 are incorporated
in the state and observation equations, and assumed to be additive and
mutually independent of known probability density functions 𝑝

(

𝑣𝑡
)

and
𝑞
(

𝑤𝑡
)

, respectively. The dimensionalities of the state and observation
vectors are respectively 𝑛𝑥 and 𝑛𝑦, and the step t =1,. . . ,T can be
numerical iteration or time.

With the initial pdf 𝑝
(

𝑥0
)

available, the sequential Bayesian
framework formulates the joint pdf 𝑝

(

𝑋𝑡|𝑌𝑡
)

at step t, where
𝑋𝑡=[𝑥1, 𝑥2,… , 𝑥𝑡] and 𝑌𝑡=[𝑦1, 𝑦2,… , 𝑦𝑡] are respectively the unknown
sequences of state vectors and the set of available observed data at
step t. Due to the computational cost and the statistical quantities of
interest such as mean and variance, the formulation can be simplified
by recursively estimating the marginal pdf 𝑝

(

𝑥𝑡|𝑌𝑡
)

(i.e. the posterior
pdf) from the prediction pdf 𝑝

(

𝑥𝑡|𝑌𝑡−1
)

(i.e. the prior pdf).
The prediction pdf can be obtained by the Chapman–Kolmogorov

equation with the first-order Markov chain assumption of 𝑥𝑡:

𝑝
(

𝑥𝑡|𝑌𝑡−1
)

= ∫ 𝑝
(

𝑥𝑡|𝑥𝑡−1, 𝑌𝑡−1
)

⋅ 𝑝
(

𝑥𝑡−1|𝑌𝑡−1
)

𝑑𝑥𝑡−1 (3)

= ∫ 𝑝
(

𝑥𝑡|𝑥𝑡−1
)

⋅ 𝑝
(

𝑥𝑡−1|𝑌𝑡−1
)

𝑑𝑥𝑡−1. (4)

The transition pdf 𝑝
(

𝑥𝑡|𝑥𝑡−1
)

can be calculated by the state equation in
Eq. (1) and the noise pdf 𝑝

(

𝑣𝑡
)

. When a new measurement 𝑦𝑡 becomes
available at step t, the new state 𝑥𝑡 in the posterior pdf 𝑝

(

𝑥𝑡|𝑌𝑡
)

can be
obtained by the likelihood of the state vector 𝑝

(

𝑦𝑡|𝑥𝑡
)

and the prior pdf
𝑝
(

𝑥𝑡|𝑌𝑡−1
)

via the Bayes theorem such that

𝑝
(

𝑥𝑡|𝑌𝑡
)

=
𝑝
(

𝑦𝑡|𝑥𝑡
)

⋅ 𝑝
(

𝑥𝑡|𝑌𝑡−1
)

𝑝
(

𝑦𝑡|𝑌𝑡−1
) . (5)

Table 1
Sequential importance resampling PF [1].

Predict :
Sample new 𝑁𝑝 particles at time t :
{

𝑥𝑖𝑡
}𝑁𝑝

𝑖=1 ∼ 𝑝
(

𝑥𝑡|𝑥𝑡−1
)

given
{

𝑥𝑖𝑡−1
}𝑁𝑝

𝑖=1
Using 𝑥𝑖𝑡 = 𝑓 (𝑥𝑖−1𝑡 , 𝑣𝑖𝑡) for i =1,. . . ,𝑁𝑝 where 𝑣𝑖𝑡 are samples from the state
noise PDF.

Update :
∙ Compute the likelihood 𝑝

(

𝑦𝑡|𝑥𝑖𝑡
)

for each 𝑥𝑖𝑡
∙ Normalize the weights 𝑤𝑖

𝑡 =
𝑝(𝑦𝑡 |𝑥𝑖𝑡)

∑𝑁𝑝
𝑖=1𝑝(𝑦𝑡 |𝑥𝑖𝑡)

∙ The posterior PDF is approximated by 𝑝
(

𝑥𝑡|𝑌𝑡
)

≈
∑𝑁𝑝

𝑖=1𝑤
𝑖
𝑡 ⋅ 𝛿

(

𝑥𝑡 − 𝑥𝑖𝑡
)

where 𝛿(𝑥) denotes the Dirac-delta mass located in 𝑥

Resample :
Resample 𝑁𝑝 particles 𝑥𝑗𝑡 with equal weights :
{

𝑥𝑖𝑡 , 𝑤
𝑖
𝑡

}𝑁𝑝

𝑖=1 ↦
{

𝑥𝑖𝑡 ,
1
𝑁𝑝

}𝑁𝑝

𝑖=1
such that 𝑝

(

𝑥𝑡|𝑌𝑡
)

≈
∑𝑁𝑝

𝑗=1
1
𝑁𝑝

⋅ 𝛿
(

𝑥𝑡 − 𝑥𝑗𝑡
)

The normalization factor in the denominator in Eq. (3) ensures the
integration of the marginal pdf to be unity, which can be written as:

𝑝
(

𝑦𝑡|𝑌𝑡−1
)

= ∫ 𝑝
(

𝑦𝑡|𝑥𝑡
)

⋅ 𝑝
(

𝑥𝑡|𝑌𝑡−1
)

𝑑𝑥𝑡. (6)

The posterior density 𝑝
(

𝑥𝑡|𝑌𝑡
)

contains all statistical information and
any necessary quantities can be calculated by the integration of the
marginal pdf in Eq. (3) such as mean, variance and ith marginal
moments. This is called the filtering problem of data assimilation which
determines the best estimate 𝑝

(

𝑥𝑡|𝑌𝑡
)

of the solution history of the
dynamical system in Eq. (1) given some partial and incomplete data
in Eq. (2). It is worth noting that the first-order Markov chain is too
simple in some fields in which the higher order Markov chain is need
for a prediction pdf, and this assumption could easily be generalized to
the higher order Markov chain. For the filtering problem in the field
of geoscience, a general assumption of the prediction pdf is generally
accepted to be the first-order Markov chain.

3. Sequential filtering methods

To obtain the mathematically optimal solution for the posterior pdfs
in Eq. (5) at time t, one can numerically discretize the Fokker–Planck
equation to evolve the system statistics [11]. However, the algorithm
is only feasible for simple models due to the computational cost. One
way to overcome this problem is to adopt a cloud of particles

{

𝑥𝑖𝑡
}𝑁𝑝
𝑖=1 to

represent the posterior pdf, where 𝑁𝑝 is the number of particles. In the
following, sequential filtering methods for this study are summarized.

3.1. Sequential importance resampling filter

The Sequential Importance Resample (SIR) filter has been used as the
most popular particle filter implementation since it is mathematically
proven to be convergent to any given pdf in the limit of 𝑁𝑝 [1,12].
In SIR, the prediction pdf is represented by the cloud of equally
weighted particles

{

𝑥𝑖𝑡−1
}𝑁𝑝
𝑖=1 each of whose weights is 𝑤𝑖

𝑡−1 =
1
𝑁𝑝

. When
assimilating measured data 𝑦𝑡 available at time t, each weight 𝑤𝑖

𝑡−1 of
particles is recalculated by the following likelihood in Eq. (5):

𝑤𝑖
𝑡 ∝ 𝑤𝑖

𝑡−1𝑝
(

𝑦𝑡|𝑥
𝑖
𝑡
)

. (7)

The sum of all new weights should be normalized so that their sum
becomes 1. Then, new particles

{

𝑥𝑖𝑡
}𝑁𝑝
𝑖=1 are drawn from the previous

particle
{

𝑥𝑖𝑡−1
}𝑁𝑝
𝑖=1 based on their weights 𝑤𝑖

𝑡 in Eq. (7). During this
resampling procedure, all particles have equal weights 𝑤𝑖

𝑡 = 1
𝑁𝑝

. The
sampling stage proposed by Gordon et al., [1] creates more high-weight
particles from the previous set of particles

{

𝑥𝑖𝑡−1
}𝑁𝑝
𝑖=1. The process at step

t is summarized in Table 1.
It is important to note that since the performance of the SIR method

depends on the sample size of 𝑁𝑝, the method sometimes experiences
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