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a b s t r a c t

This paper aims to accurately and efficiently achieve the benchmark solutions of stationary stochastic responses
for rectangular thin plate. Firstly, the exact solutions of free vibration for thin plate with SSSS, SSSC, SCSC,
SFSF, SSSF and SCSF boundary conditions are introduced to random vibration analysis. Based on pseudo
excitation method (PEM), the analytical power spectral density (PSD) functions of the transverse deflection,
velocity, acceleration and stress responses for thin plate under random base acceleration excitation are derived.
Subsequently, to enhance computational efficiency, the discrete analytical method (DAM) that realizes the
discretization for the modal coordinates and frequency domain is proposed. Finally, the efficiency of DAM and the
accuracy of benchmark solutions are scrutinized by comparison with the analytical solutions and finite element
solutions.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

As a basic structural member, the plate is widely applied to prac-
tical engineering. Usually, the plate structure is subjected to various
excitations such as the earthquakes, winds, waves, turbulent boundary
and jet noise, etc., which commonly present the randomness both in
temporal and spatial domain. Random vibration analysis for a plate
structure involves two types of model. The first is the continuous model
based on the high-order partial differential equation, from which the
analytical solution of random vibration response may be achieved.
The second is the discrete model in which the continuum structure
with infinite degrees of freedom is discretized to a multiple degrees of
freedom (MDOF) system, by means of the numerical technique such as
the popular finite element method (FEM). The discrete model can be
utilized to approximately obtain the stochastic dynamical responses of
structure. However, the continuous model can describe accurately its
mechanical behavior, and is suitable to achieve the credible benchmark
solutions of structures for verifying the discrete model and associated
numerical methods. This work attempts to address the problem that
there is a lack of benchmark solutions of random vibration responses,
especially the stress solutions of thin plate.

In the past fifty years, the progresses on random vibration anal-
ysis based on the continuous model have been made. By virtue of
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normal mode method and the time domain Green function method,
Lin [1] investigated the transient displacement responses for continuous
structures subjected to stationary random excitations. Crandall and his
colleagues [2,3] pointed out that, with exception for enhanced response
in small zones and narrow lanes, the mean square velocity response
of plate under stationary wide-band point random excitation presents
uniform spatial distribution. Rosa and Franco [4,5] carried out the
random vibration analysis for the rectangular thin plate subjected to
the turbulent boundary layer excitation. However, only the simple sup-
ported edges for the beam or plate was tackled in their works. In fact, the
boundary condition has considerable effect on the stochastic response of
the structure, because its frequencies and mode shapes are completely
different under different boundary conditions. Hosseinloo et al. [6] ex-
amined the effects of modal damping and excitation frequency range on
the root mean square (rms) of acceleration response and the maximum
deflection of thin plates with CCSS, SCCC, CCCC boundary conditions
subjected to the base acceleration random excitation, and indicated that
these responses decrease with the increasing of the modal damping
ratio and the excitation frequency range. Nevertheless, it is difficult to
achieve the benchmark solutions in their study, since the approximate
frequencies and modal shapes were adopted. Moreover, the complete
quadratic combination (CQC) based analytical approach might require
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the large computational efforts with the widening of frequency band of
random excitation.

On the other hand, to balance the computational accuracy and
efficiency, the significance of the modal cross-correlation was also
intensively investigated. Crandall et al. [2,7–9] examined the effects
of modal overlap ratio on the mean square response for various
structures, and pointed out that the bandwidth of random excitation
and the damping ratio of structures are the main influence factor on
stochastic response, as well as suggested the modal-sum and image-sum
approaches to decrease the approximate evaluation error of the sum of
a large number of integral [10]. Elishakoff et al. [11–14] performed
a series of researches on different structures such as curved panel and
shell, to elaborate the dramatic effects of modal cross-correlation on the
mean square responses. Meanwhile, the similar works for discrete MDOF
systems were also conducted. In order to decrease the computational
effort of stochastic dynamical analysis, an approximate square root
of sum square (SRSS) method was applied by omitting modal cross-
correlation terms [15]. Wilson et al. [16] developed a CQC method to
reduce the numerical errors of SRSS rule, but at the expense of effi-
ciency. Accordingly, Lin et al. [17–20] proposed a highly efficient and
accurate algorithm named as pseudo excitation method (PEM), which
promotes the engineering application of random vibration theory. The
extensive application of the PEM is dependent on the development
of finite element method. It is well known that the numerical errors
of FEM will nonlinearly increase with the increasing frequency [21].
For obtaining the benchmark solutions, the analytical solutions of free
vibration can be adopted to eliminate the errors in the band-wide
random vibration analysis for the plate. In this paper, the benchmark
solutions are achieved efficiently, when the plate is subjected to band-
wide random excitation up to 20 kHz with the proposed PEM-based
discrete analytical method.

For the free vibration analysis of plates, Leissa, Leissa and
Qatu [22,23] reviewed the free vibration for rectangular thin plate
with various boundary conditions, and pointed out that there are exact
solutions of free vibration for only the 6 Lévy boundary conditions
(SSSS, SSSC, SCSC, SFSF, SSSF, SCSF) with two opposite edges simply
supported among 21 cases, which involve the possible combinations of
clamped (C), simply-supported (S), and free edge (F) condition. Due to
the difficulty of solving the fourth-order partial differential governing
equation, the other 15 cases must be solved by the approximate ap-
proaches, such as FEM [24], finite difference method [25], finite strip
method [26], boundary element method [27], differential quadrature
method [28], Rayleigh–Ritz method [29], superposition method [30],
symplectic superposition method [31,32] etc.

In this paper, the analytical PSD functions of stationary stochastic
responses for rectangular thin plate with the 6 Lévy boundary conditions
(SSSS, SSSC, SCSC, SFSF, SSSF and SCSF) are obtained. Therein, the
exact solutions of free vibration of thin plate are introduced, and the
pseudo excitation method based on the continuous model is employed.
Through integrating the corresponding PSD functions, the rms of the
displacement, velocity and acceleration responses as well as the stress
components are achieved, whose results are also termed as benchmark
solutions. Moreover, the discrete analytical method (DAM) is developed
to improve computational efficiency without reducing the precision by
discretizing the modal space coordinate and frequency domain.

The remainder of this paper is organized as follows. Section 2 revisits
the exact Lévy solutions of free vibration for rectangular plate under
6 boundary conditions, which provides a foundation of benchmark
solutions of stationary random responses. In Section 3, the analytical
response PSD functions are derived by employing the PEM-based ana-
lytical method and discrete analytical method. Moreover, an approach
to calculate the rms of stationary random response of thin plate is
presented in Section 4. Then, two examples in Section 5 illustrate
the benchmark solutions of stationary random vibration for the 6
cases under base wide-band white noise excitation and filtered white
noise excitation. Comparison between the analytical solutions and finite
element solutions verifies the high accuracy and efficiency of DAM.
Section 6 draws some conclusions.

2. Exact solutions of free vibration of rectangular thin plate

2.1. Differential equation of forced vibration of rectangular thin plate

The differential equation of forced vibration for rectangular thin
plate is given by [22,23]

𝐷∇4𝑤(𝑥, 𝑦, 𝑡) + 𝑐
𝜕𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑡
+ 𝜌ℎ

𝜕2𝑤(𝑥, 𝑦, 𝑡)
𝜕𝑡2

= 𝑝(𝑥, 𝑦, 𝑡) (1)

where 𝐷 = 𝐸ℎ3∕12(1 − 𝜈2) is the bending rigidity of the plate; 𝐸 the
Young’s modulus and 𝑣 the Poisson’s ratio; ∇4 = 𝜕4

𝜕𝑥4
+2 𝜕4

𝜕𝑥2𝜕𝑦2
+ 𝜕4

𝜕𝑦4
is the

bi-harmonic operator; 𝑤(𝑥, 𝑦, 𝑡) is the transverse deflection; 𝑐 indicates
the viscous damping coefficient of the plate; 𝜌 is the volume density of
the plate; ℎ indicates the plate thickness; 𝑝(𝑥, 𝑦, 𝑡) is an excitation.

As shown in Fig. 1, the three classical boundary conditions for the
rectangular plate, namely simply supported (S), clamped (C) and free
(F) can be described by

Simply supported (S):𝑤 = 0, 𝑀𝑥 = 0

Clamped (C):𝑤 = 0, 𝜕𝑤
𝜕𝑥

= 0

Free (F):𝑀𝑥 = 0, 𝑉𝑥 = 𝑄𝑥 +
𝜕𝑀𝑥𝑦

𝜕𝑦
= 0

(2)

where 𝜕𝑤
𝜕𝑥 is the rotation angle in the 𝑥𝑧 plane; 𝑀𝑥denotes the bending

moment in the 𝑥𝑧 plane; 𝑄𝑥represents the shear force; 𝑀𝑥𝑦 is the
torsional moment in the 𝑦𝑧 plane; 𝑉𝑥 is the equivalent shear force.

2.2. Exact solutions of free vibration under 6 boundary conditions

The undamped free vibration differential equation of thin plate is
formulated as [22]

𝐷∇4𝑤(𝑥, 𝑦, 𝑡) + 𝜌ℎ
𝜕2𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑡2
= 0 (3)

The transverse deflection in Eq. (3) is expressed as 𝑤(𝑥, 𝑦, 𝑡) =
𝜙(𝑥, 𝑦) exp(i𝜔𝑡), in which 𝜔 indicates the angular frequency of free vibra-
tion, and 𝜙(𝑥, 𝑦) represents the corresponding modal shape. Substituting
the transverse deflection formulation 𝑤(𝑥, 𝑦, 𝑡) into Eq. (3) can yield the
differential equation about the modal shape function

𝐷∇4𝜙(𝑥, 𝑦) − 𝜌ℎ𝜔2𝜙(𝑥, 𝑦) = 0 (4)

For the 6 cases with a couple of simply supported boundary condi-
tions on the opposite edge in Fig. 1(b), the Lévy solutions [22,23] of
modal shape are expressed as

𝜙(𝑥, 𝑦) =
(

𝐴1 cos 𝜆1𝑦 + 𝐴2 sin 𝜆1𝑦 + 𝐴3 cosh 𝜆2𝑦 + 𝐴4 sin h𝜆2𝑦
)

sin𝜇𝑥 (5)

where 𝜇 = 𝑚𝜋∕𝑎, and 𝑚 is the number of half-wave; 𝑎 is the length
of plate along the 𝑦 coordinate; 𝜆1 =

√

𝜇2 −
√

𝜌ℎ𝜔2∕𝐷, and 𝜆2 =
√

𝜇2 +
√

𝜌ℎ𝜔2∕𝐷 can be calculated according to the corresponding fre-
quency equations (see Table A in Appendix); 𝐴1∼𝐴4 will be determined
in terms of the boundary conditions.

Note that an assumption
√

𝜌ℎ𝜔2∕𝐷 > 𝜇2 is taken in Eq. (5), and
frequency equations are listed in Table A. If

√

𝜌ℎ𝜔2∕𝐷 < 𝜇2, it must be
replaced sin𝜆1𝑦 and cos𝜆1𝑦 with sinh𝜆1𝑦 and cosh𝜆1𝑦, respectively.

3. Discrete analytical method for stationary random responses

In this section, at first, the analytical procedure of stationary random
vibration responses for rectangular thin plate is derived by combining
the mode superposition method with the pseudo excitation method.
Actually, it is not restricted by the form of random excitation, such as
the point excitation, the distributed excitation or the base acceleration
excitation.
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