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a b s t r a c t

As the integrated reflection of track substructure deformations and the most important excitation for vehicle–
track interactions, track irregularities show random nature, and generally being regarded as weak stationary
random processes. To better expose the full statistical characteristics of track random irregularities on amplitude
and wavelength, a time–frequency transform and probability theory based model is developed to simulate
representative and realistic track irregularity sets by combining with random sampling methods. Moreover,
a three-dimensional (3-D) vehicle–track coupled model is established by finite element method and dynamic
equilibrium equations, where the nonlinearity of wheel/rail interaction is considered. Finally, a probability
density evolution method (PDEM) is introduced to solve the probabilistic transmission issues between track
irregularity sets and dynamic responses of vehicle–track coupled systems. There is a clear demonstration that
the results derived by proposed methods are comparable to the experimental measurements. Through effectively
applying the above methodologies, the probabilistic and random characteristics of vehicle–track interaction can
be properly revealed.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Track irregularities, generally viewed as the rail profile deforma-
tions, are the integrated reflections of the track substructure deforma-
tions, and playing important roles in dynamic propagation mechanism
of wheel/rail systems, wheel/rail noise, track maintenance, etc. It has
been a common point of view that track irregularities possess random
and evolutionary nature due to the wheel/rail cyclic interactions,
subgrade settlement, material fatigues, etc. Obviously, the vehicle–track
interactions excited by track irregularities will show great variability
and stochasticity.

Until now, the railway dynamics with track irregularities considered
are abundant, see for instance, Refs. [1–10]. While these researches
mainly concentrate on typical track conditions, e.g., wheel flats, the
specific forms of track profiles, etc., it is therefore insufficient that the
full information of track irregularities on amplitude and wavelength
measured from large-scale realistic railway lines has not been fully
considered, and accordingly, the research results just represent the spe-
cific or local dynamic properties of vehicle–track interactions, and this
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type of analytical method will lose its power when solving some other
scientific issues, e.g., reliability based track maintenance, stochastic
vibrations, etc.

As stated above, though the randomicity of track irregularities has
been involved in some studies, the probabilistic statistics on amplitude
and wavelength of random track irregularities accompanied by a general
approach to simulate them with high efficiency has not been fully
developed. However, in some of the pioneering work, Balzer [11],
Corbin [12] and Massel [13] started to use power spectral densities
(PSDs) to express the stochastic irregularities of the track and model
the random field of track irregularities, moreover, R.N. Iyengar and
O.R. Jaiswal [14] reminded us of the non-Gaussian characteristic of
irregularities measured on a sliding chord 3.6 or 9.6 m long and devel-
oped a non-Gaussian model to simulate the unevenness data. Later, they
continuously proposed a random field model for estimating expected
values of level crossing and peaks in a given track length [15]. Recently,
some more developments have been achieved in data mining and
stochastic modeling of track irregularities, for example, G. Perrin [16]
devoted to a remarkable research on the stochastic modeling of the
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track geometry, which properly considered the statistical properties of
this vector-valued, non-Gaussian and non-stationary track irregularity
random field and most importantly took into account the dependencies
of irregularities; and then, Alfonso et al. [17] used almost the same
strategies to construct the stochastic model of track geometry irregu-
larities.

Additionally, it is worth mentioning that more and more researchers
began to pay attention to the random vibrations of railway dynamics,
see for instance, Xu and Zhai [18] proposed a computational model
to analyze the temporal–spatial stochastic vibrations of vehicle–track
systems, in which the randomness of system parameters and excitations
are effectively considered and coupled; Mao et al. [19] introduced the
probability density evolution method (PDEM) into the random analysis
of train–bridge coupled system involving random system parameters;
Zhu et al. [20] and Zeng et al. [21] studies the stochastic vibration of
vehicle–bridge system using pseudo-excitation method (PEM) by mainly
considering the random characteristics of track irregularities.

Undoubtedly, the body of research represented above highlights
the work done on the modeling of track irregularities and random
vibrations of vehicle–track (bridge) systems. However, the foregoing
researches, when used hand-in-hand with the probability theory must
further be examined to clarify the probabilistic properties of track
irregularities, since these properties are the foundation of the reliability-
based parameters design and the dynamic analysis of the railway system.
Further researches in this area are therefore recommended to promote
the advancements of the random analysis of railway interaction systems.

The purpose of this paper is to identify available probabilistic
information of track irregularities and to develop an inversion model
for obtaining the representative track irregularity sets, shown in Sec-
tion 2; then in Section 3, a vehicle–track coupled model (VTCM) are
compiled for stochastic analysis of vehicle–track systems; moreover, by
introducing the probability density evolution method (PDEM), the prob-
abilistic transmission between track random irregularities and dynamic
responses of vehicle–track systems is properly addressed, as presented in
Section 4; finally, Section 5 validates the proposed method by comparing
the calculated results with the actually measured ones and presents some
typical responses of the vehicle systems and the track systems.

2. Track irregularity probabilistic model

In this paper, a track irregularity probabilistic model (TIPM) will be
developed with the help of track irregularity PSD accompanied by the
cumulative probability method. It is known that track irregularity power
spectral densities at different wavelengths are randomly distributed with
probabilistic properties.

Without loss of generality, the cumulative probability PSDs (CP-
PSDs) are denoted as 𝜳 (𝝀,𝝎), in which 𝝀 represents the vector of
cumulative probabilities, 𝝎 represents the spatial frequencies. 𝜳 (𝝀,𝝎)
can therefore be further expressed as

𝜳 (𝝀,𝝎) = {𝑷𝝀𝑖,𝝎𝑗 |𝝀𝑖 ∈ [𝜆𝑙 , 𝜆𝑢],𝝎𝑖 ∈ [𝜔𝑙 , 𝜔𝑢]} (1)

where 𝑷𝝀𝑖,𝝎𝑗 denotes the power spectral densities holding for certain
cumulative probability and spatial frequency, i.e., 𝝀𝑖, 𝝎𝑗 . 𝜆𝑙 and 𝜆𝑢
denote the lower- and upper-limit of cumulative probabilities, 𝜔𝑙 and
𝜔𝑢 the lower and upper limits of spatial frequencies.

From Eq. (1), it is convenient to let 𝜳 (𝝀,𝝎) take the form below
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Previous study [22] has shown that power spectral densities for any
arbitrary frequency obey specific probability distribution, from which it
can be deduced that there are mathematical transferring relationships

between spectral densities, spatial frequencies and cumulative probabil-
ities, with noting that the 𝑷𝝀𝑖,𝝎𝑗 can be solely confirmed by 𝝀𝑖 and 𝝎𝑗 at
a specified probability.

With the basic understanding presented above, one is capable of
constructing the TIPM with the help of these relationships.

2.1. Calculation of track irregularity cumulative probability spectrum

In Ref. [22], it is pointed out that the spectral densities subjected to
stationary random process of track irregularities will obey 𝜒2 distribu-
tion with 2 degrees of freedom (DOFs) after appropriate transformation,
the conversion approach is shown by the following two steps:
(1) Start with the calculation of the mean value of track irregularity
spectrum denoted as 𝑺𝑘, where 𝑘 is corresponded to different frequen-
cies;
(2) Conduct the transformation upon 𝑺𝑘,𝑗 , which denotes a spectral
density from the PSD sequence toward specific frequency point 𝑘, the
transformation can be written as

𝑺𝑘,𝑗 = 2
𝑺𝑘,𝑗
𝑺𝑘

, 𝑗 = 1, 2,… , 𝑁 (3)

in which 𝑁 is the total number of spectral densities at the specific
frequency 𝑘.

Consequently, one is reminded that 𝑺𝑘,𝑗 obey 𝜒2 distribution with 2
DOFs defined by

𝑓 (𝑥) =

⎧
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⎪

⎩

1
2𝑛∕2𝛤 (𝑛∕2)

𝑥𝑛∕2−1e−𝑥∕2, 𝑥 > 0

0 else
(4)

where 𝑛 denotes the number of DOFs, which is also the shape parameter,
and 𝛤 (𝑛∕2) denotes the gamma function.

Regarding track random irregularities as a weak stationary random
process, the 𝜒2 distribution with 2 DOFs is generally appropriate in
engineering application. But by precisely surveying the characters of
𝜒2 distribution with 2 DOFs, it can be observed that its shape curve is
monotonically decreasing, which means that the probability distribu-
tion curves of spectrum densities are all strictly monotone, decreasing
without coinciding with the measured results.

GEV distribution can be unified as the following formula [23], reads:

H(𝑥; 𝜁, 𝜇, 𝜎) = exp{−[1 + 𝜁 (
𝑥 − 𝜇
𝜎

)]−
1
𝜁 }I(𝑥) (5)

in which 𝜇 and 𝜎 denote the location parameter and scale parameter,
respectively; 𝜁 denotes the shape parameter, I(𝑥) denotes the indicative
function illustrated as

I(𝑥) =

{

1 when [1 + 𝜁 (
𝑥 − 𝜇
𝜎

)] > 0
0 else

(6)

when 𝜁 = 0, H(𝑥) is known as the Gumbel distribution, i.e., extreme
I-type; when 𝜁 > 0, H(𝑥) is the Frechet distribution, i.e., extreme II-
type; when 𝜁 < 0, it can be called Weibull distribution, i.e., extreme III-
type. On the basis of probability distribution, i.e., H(𝑥), whose inverse
function can be derived easily, and then the inverse value with respect
to arbitrary probability level 𝐻 ′ can be obtained by:

𝑥𝐻 ′ =
{

𝜇 + {𝜎1 − [− ln(𝐻 ′)]𝜁∕𝜁}, 𝜁 ≠ 0
𝜇 + 𝜎 ln[− ln(𝐻 ′)], 𝜁 = 0

(7)

According to Eq. (5), the probabilistic fitting of power spectral densities
at different frequencies can be realized. Meanwhile, the parameters,
i.e., 𝜇, 𝜎 and 𝜁 , are wholly obtained. Subsequently, with these pa-
rameters, the CP-PSDs can be mutually transformed among arbitrary
cumulative probabilities.

Figs. 1 and 2 show the comparisons of CP-PSDs of track vertical pro-
file irregularity and track alignment irregularity, which are respectively
inversed from experiments. GEV distribution, and 𝜒2 distribution with
2 DOFs of Wuhan–Guangzhou High-speed Railway and Qinghai–Tibet
Railway. From these two figures, it is clearly illustrated that there are
wide variations at low cumulative probabilities if being dealt with 𝜒2

distribution with 2 DOFs and as opposed to this, a fairly good fitting of
CP-PSDs can be realized by using GEV distribution.
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