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a b s t r a c t

Building on a martingale approach to global optimization, a powerful stochastic search scheme for the
global optimum of cost functions is proposed using change of measures on the states that evolve as
diffusion processes and splitting of the state-space along the lines of a Bayesian game. To begin with, the
efficacy of the optimizer, when contrasted with one of the most efficient existing schemes, is assessed
against a family of Np-hard benchmark problems. Then, using both simulated and experimental data,
potentialities of the new proposal are further explored in the context of an inverse problem of sig-
nificance in photoacoustic imaging, wherein the superior reconstruction features of a global search vis-à-
vis the commonly adopted local or quasi-local schemes are brought into relief.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Inverse problems aim at the recovery of unknown parameters
of a system, typically a mathematical model given perhaps by a set
of differential equations, based on a few noisy measurements of
the system response. Solutions to inverse problems may yield
crucial parameter information with potential applications in many
areas of science and engineering. Despite the exciting possibilities,
a generally agreed numerical framework enabling acceptable so-
lutions to inverse problems remains elusive, partly owing to so
called non-uniqueness, as it arises in a deterministic setting (a
regularized quasi-Newton method to wit) engendered by model
and data (measurement) insufficiency. Moreover, presence of
noise in the data may cause such solutions to drift to infeasible
regions. A basic recipe for solving an inverse problem is the
minimization of an objective functional that specifies the misfit
between the available measurements and the predictions from the
recovered model. In a deterministic setup involving sufficiently
smooth fields, a common way to perform this minimization is
through a gradient-based local search as exemplified, say, by the
iterative Gauss-Newton (GN) method [1]. A GN-based scheme
necessarily incorporates certain regularization strategies [2] that
impose a priori constraints on the inverse problem to yield stable
and meaningful solutions. Here the choice of ‘right’ regularization
parameters adds to the computational burden brought in by Ja-
cobian calculations in nonlinear problems. Indeed most objective

functions, being non-convex, multimodal and perhaps non-dif-
ferentiable, preclude the very applicability of a GN-like scheme. In
contrast, a Bayesian search scheme [3] founded on the probability
theory affords a more natural means to account for the numerous
possible solutions by allowing the underlying probability dis-
tribution to be multimodal. Starting with an assumed prior, the
aim of such a scheme would be to estimate the posterior para-
meter distribution conditioned on the noisy measurements. An
approach that incorporates Bayesian updates is based on the fil-
tered martingale problem [4,5] wherein the parameter to be re-
covered is treated as a stochastic process [6], possibly with respect
to an iteration variable in case the system is time-independent. It
has been shown that this approach enables obtaining additive
updates to the parameters based on a change of measures so as to
drive the resulting measurement-prediction misfit to a zero-mean
martingale [6,7]. Convergence to a martingale structure ensures
that the expectation of the measurement-prediction misfit, treated
as a stochastic process, will remain zero and invariant to random
perturbations during subsequent iterations or temporal recur-
sions. It is known that, under fairly general conditions, the solution
to a filtered martingale problem is unique [8] and this is perhaps a
welcome departure from the non-uniqueness issues that confront
a deterministic setup. Nevertheless, given that solutions could be
highly sensitive to data noise, model errors and varying dimen-
sions of the data and parameter sets, a filtered martingale pro-
blem, numerically implemented through a Monte Carlo scheme
involving a finite ensemble, may at best ensure that the objective
function attains an available local minimum. In general, upon
averaging over a multi-modal posterior distribution irrespective of
whether the different modes are physically relevant or not, the
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recovered estimates for the system parameters could be in sig-
nificant error. This problem is exacerbated with sparse data
availability, a case often encountered in practice. A more rational
strategy could be in the form of a stochastically founded non-local
or global search scheme to pick out the most relevant mode in the
posterior distribution or, perhaps to redefine a modified distribu-
tion around this mode and thus address the deterioration of the
quality of solutions owing to averaging over multiple possibilities.
This is an important point and is precisely what the ‘coalescence’
strategy, described in Section 3 of this article as part of the global
search, aims to achieve.

Numerous heuristic and meta-heuristic global optimization
schemes [9] abound the literature, prominently including genetic
algorithm (GA) [10], simulated annealing [11], particle swarm
optimization (PSO) [12], differential evolution (DE) [13] and cov-
ariance matrix adaptation evolution strategy (CMA-ES) [14] to
name a few. Most such evolutionary schemes begin with a random
scatter of candidate solutions, henceforth referred to as particles,
which evolve over subsequent iterations according to a scheme-
specific update strategy. The update steps aim at enabling the
particles to explore the state space in order to detect the global
minimum of the objective function. Success depends on the right
exploration-exploitation trade-off that charts out a middle path
between computationally expensive exploration and quickly
identifying the global extremum from amongst the available ex-
trema. While a full exposition of various schemes is not within our
scope, brief outlines of a few prominent ones should be in order.
The GA and CMA-ES assign weights to each particle based on the
‘closeness’ of the computed objective function to its available op-
timal value. In particular, only the best fit particles spawn new
ones at a subsequent iteration. Such a weight-based approach that
neglects the ‘bad’ particles might lead to a faster yet premature
convergence to a local extremum despite the exploratory steps
involved. This problem, known as ‘particle collapse’ in the sto-
chastic filtering parlance, occurs when the entire weight is as-
sumed by a single particle as the iterations progress. This is clearly
demonstrated for the case of CMA-ES while attempting to mini-
mize some of the benchmark objective functions in Section 5. In
partial amelioration of this bottleneck, schemes like DE and PSO
apply heuristically derived additive corrections to particles in the
update stage.

Interestingly, none of the schemes discussed so far are naturally
equipped to handle multivariate/multi-objective optimization
(MOO), the sine qua non in solving many inverse problems. Al-
though there have been attempts at adapting the CMA-ES, a
powerful evolutionary scheme, for MOO, only limited success in
applications has accrued [15]. In [16,17], we have proposed a
generalized optimization framework, COMBEO (Change Of Mea-
sure Based Evolutionary Optimization), based mainly on a per-
turbed martingale problem that could rationally accommodate
updates by different existing methods within a single mathema-
tical structure. The need for such a unified framework was inspired
by the no free lunch theorems [18] that proved the near im-
possibility of a single optimization scheme performing well across
the spectrum of Np-hard problems. Yet another advantage of
COMBEO was in its inherent ability to treat multi-objective pro-
blems. On the downside, COMBEO either required a large en-
semble size or an inflated number of measurements to solve a
given problem. One of our current aims is thus to modify COMBEO
so as to better equip it to solve practical problems with smaller
ensemble sizes and sparser sets of measurements. This is primarily
accomplished by incorporating within the martingale problem of
local optimization, a new update strategy based on state space
splitting (3S). Additionally, perturbative exploratory steps such as
scrambling, blending etc. guide the greedy local search to converge
to the global optimum. Our second focus here is on establishing,

using experimental data, the efficacy of a non-local search as en-
coded within COMBEO for parameter reconstruction and contrast
such performance with that of a more localized search as re-
presented, say, by COMBEO stripped off its global search tools. In
the process, we demonstrate the usefulness of the 3S scheme in
solving inverse problems with sparse measurements.

The rest of the paper is organized as follows. Section 2 poses
optimization as a filtered martingale problem and puts forth the
bare-bones additive update strategy that renders the measure-
ment-prediction misfit a zero-mean martingale. The random ex-
ploratory operations that aid in the global search are briefly ex-
plained in Section 3. Much of the material presented in Sections
2 and 3 (with the exceptions of the blending strategy and a few
additional insights) is reported elsewhere [16,17] and is included
here for completeness. Section 4 contains a game theoretic per-
spective that leads to the 3S scheme followed by a pseudo-code for
the proposed evolutionary search. The first part of Section 5 gives
comparative results of the proposed scheme vis-à-vis CMA-ES in
minimizing a few benchmark objective functionals. Thereafter, we
undertake a numerical study to contrast the present approach vis-
à-vis one without the trappings of global search in the context of a
medical imaging problem, viz. quantitative photoacoustic tomo-
graphy. The aim is to bring out, perhaps for the first time, what a
well-conceived global search scheme can do when the available
measurements are very sparse. Reconstructions for both simulated
and experimental data are given. The concluding remarks are
presented in Section 6.

2. Optimization as a filtered martingale problem

For a nonlinear objective functional ( )f x : → nx , our aim is to

find ∈ x nmin x such that ( ) ≤ ( ) ∀ ∈ f fx x x nmin x. For the multi-

objective case with ( )( ) = ( ) ( ) ∈ f ff x x x: , ... , n n1 f f , each compo-

nent ( ) ∀ =f i nx 1, ... ,i
f has to be minimized. If we wish to solve

the deterministically posed optimization problem by borrowing
ideas from stochastic filtering, the parameters to be recovered and
the objective functions must be treated as stochastic processes,
which are possibly of the diffusion type evolving with respect to a
time-like iteration variable τ . Within a complete probability space
( )Ω τ  P, , , [6], such a characterization would render Ω → x: nx

an nx-dimensional random vector at each iteration with  de-
noting the Borel s-algebra over open subsets ofnx, τ the natural
filtration and P the probability measure. Noting however that the
parameters are usually not governed by any dynamics, x may have
to be artificially evolved as a continuous Brownian motion or
discrete random walk in τ (evolution with jump discontinuities,
modeled as Levy processes, is possible and even desirable for more
efficient non-local search; but not considered here). The evolution
of the continuously parameterized stochastic process τx is then
represented in the form of a stochastic differential equation (SDE)
[6]:

= ( )τ τd dx B 2.1

Here, ∈τ B nx is a vector Brownian motion with mean zero and
covariance matrix Σ Σ ∈ ×B B

T n nx x. Although τ is by definition
monotonically increasing in + , in practice, τx is evolved only over

finite increments of τ , i.e. for τ τ< <... n1 t
. Thus, for the ( )+k 1

th

iteration where τ τ τ∈ ( ]+,k k 1 , we can write a discrete form of Eq.
(2.1) as

= + Δ ( )+x x B 2.2k k k1

where Δ = −+B B Bk k k1 . Let a minimum of the objective function be
denoted as ˜ = ( )f f xmin . In a deterministic setup, when the design
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