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A B S T R A C T

The assumption that demand parameters D for realistic structures, i.e., complex, nonlinear dynamic systems,
subjected to seismic acceleration processes A(t) correlate satisfactorily with maxima Sa(T) of responses of single
degree of freedom (SDOF) linear systems to A(t) is the cornerstone of current definitions of seismic intensity
measures (IMs).

We show that, generally, Sa(T) and D are weakly dependent and conclude that fragilities defined as functions
of Sa(T) have large uncertainties. The analysis considers linear/nonliear systems and single/multiple ordinates
of Sa(T). Tools of random vibration, copula models, and multivariate extreme value theory are employed to
quantify the dependence between Sa(T) and D.

1. Introduction

Fragilities are probabilities that structural systems enter specified
damage states for given seismic intensity measures (IMs) and consti-
tute essential tools for performance-based earthquake engineering. To
be useful, IMs need to be efficient, i.e., structural demand parameters D
conditional on IMs have small variances, and sufficient, i.e., the
distributions of the conditional random variables D|IM are completely
defined for given IMs [4,11–13]. For efficient IMs, the distribution of
the conditional variables D|IM can be estimated from relatively small
sets of structural responses. For sufficient IMs, the conditional random
variables D|(seismic hazard) and D|IM have similar distributions so
that probability plots of structural damage versus IMs, i.e., fragilities,
are meaningful.

IMs used currently in performance-based earthquake engineering
are functionals of the seismic ground acceleration process A(t), and can
be divided in two groups. The first group includes functionals of
samples of A(t), e.g., the peak ground acceleration (PGA) and the peak
ground velocity (PGV). The second group consists of functionals of
filtered versions of samples of A(t), e.g., single/multiple ordinates of
the pseudo-acceleration response spectrum Sa(T) for selected periods
T. Our focus is on IMs in the second group since they are used
extensively in practice.

Efficiency, sufficiency, and other properties of IMs have been
studied extensively during the last two decades. Yet, these properties
could not be assessed precisely since the distributions of IMs and
demand parameters are not known due to the limited information on
the seismic acceleration process A(t). It has been proposed to (1) use
concepts of the information theory to quantify the information carried

by various IMs for selected demand parameter [4] and use it to rate
their performance or (2) assess the performance of IMs for selected
structural demand parameters based on benchmark studies [11–13].
These studies recognize that sufficient IMs may not exist and that
resulting ratings of IMs may be affected by the considered information
metrics and benchmark studies.

This paper examines critically the unstated assumption that
responses of complex nonlinear structural systems can be predicted
with satisfactory accuracy from those of linear SDOF systems. The
assumption is the cornerstone of current definitions of IMs. We confine
our analysis to seismic acceleration processes A(t) with known prob-
ability law so that the joint distribution of Sa(T) and structural demand
parameters D can be found. The seismological model in [16] and other
models are used to characterize the seismic acceleration process A(t).
Let X t( )sdof and X(t) denote responses of linear single degree of freedom
(SDOF) and complex nonlinear systems subjected to A(t). These
responses and, therefore, Sa(T) and D, cannot be independent as
functionals of the same process A(t). However, they are likely to be
weakly dependent for realistic structures since the stochastic processes
X t( )sdof and X(t) have very different sample properties and frequency
contents. Concepts of the random vibration and the multivariate
extreme value theories and copula models are used to quantify the
dependence between Sa(T) and D.

It is found that, for realistic structural systems, (1) the dependence
between Sa(T) and D is weak so that fragilities defined as functions of
Sa(T) have large uncertainties and (2) the fragilities defined as
functions of multiple ordinates of Sa(T) provide only a slight improve-
ment over those based on single ordinates of Sa(T). It is concluded that
fragilities need to be defined as functions of parameters of the law of
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A(t), e.g., fragility surfaces of the type introduced in [10], rather than
properties of functionals of samples of this process, e.g., ordinates of
the pseudo-acceleration response spectrum Sa(T).

2. Problem definition

Let P ξ P ξ P D I ξ( ) = ( IM = ) = ( ∈ IM = )f denote the probability
that a structural system enter a damage states if subjected to ground
motions with scalar/vector-valued intensity measure ξ, where I defines
the set of demand parameters which yield damage state . Fragilities
are plots of P ξ( )f against ξ. Generally, the probabilities P ξ( )f are
estimated from structural responses to seismic records scaled in some
manner [3] so that their accuracy depends on the sample size, scaling
procedure, and properties of IMs.

Suppose the seismic ground acceleration at a site can be modeled by
a stochastic process A(t), t τ∈ [0, ]. Let X t( )sdof and X(t) denote the
response of a single degree of freedom (SDOF) linear oscillator with
damping ratio ζ and period T and the response of an arbitrary
structural system subjected to the same ground acceleration A(t).
Generally, X(t) is a vector-valued process. For simplicity, we consider
real-valued demand parameters of the type D h X t= max ( ( ))t τ0≤ ≤ ,
where τ denotes the duration of the seismic event and h maps X(t)
into a real-valued response of interest, e.g., an interstory displacement
or a floor acceleration. The IM of interest is the pseudo-spectral
acceleration S T π T X t( ) = (2 / ) max | ( )|t τa

2
0≤ ≤ sdof . The input-output map-

pings A t X t X t S T D( )↦ ( ); ( )↦ ( );asdof show that Sa(T) and D are depen-
dent random variables as functionals of A(t), t τ0 ≤ ≤ .

Intuition suggests that Sa(T) and D are weakly dependent since
they are obtained from the stochastic processes X t( )sdof and X(t) which
have very different properties as solutions of simple linear and complex
nonlinear random vibration problems to A(t). For example, if A(t) is
Gaussian, X t( )sdof and X(t) are Gaussian and non-Gaussian processes
with very different frequency bands. If this intuition is correct,
fragilities defined as functions of single/multiple ordinates of Sa(T)
have significant uncertainties so that they are of limited practical use.
The main objective of this study is to quantify the dependence between
Sa(T) and D and determine implicitly whether fragilities defined as
functions of current IMs provide useful information for performance-
based earthquake engineering.

To achieve this objective, we quantify the dependence between
Sa(T) and D by using a broad range of statistical tools, which are
discussed in Section 3. If the dependence between Sa(T) and D is very
strong and weak, then Sa(T) is a very good and unsatisfactory IM.
Corresponding fragilities plotted against Sa(T) are informative and
provide at best limited information, respectively.

The remainder of this section illustrates the relationship between
S T( )a and D for earthquakes of increasing intensities, outlines our
formulation, and discusses briefly the computational tools used in
analysis.

2.1. An illustration

Suppose X(t) is the displacement of a Duffing oscillator with
parameters ν ζ β( , , )0 which is at rest at the initial time and is subjected
to a ground acceleration process A(t). Then, X(t) satisfies the differ-
ential equation

X t ζ ν X t ν X t β X t A t t τ¨ ( ) + 2 ˙ ( ) + ( ( ) + ( ) ) = − ( ), ∈ [0, ],0 0
2 3 (1)

with initial conditions X (0) = 0 and Ẋ (0) = 0. If β = 0 and ν π T= 2 /0 ,
then X t X t( ) = ( )sdof is the displacement of a linear oscillator with
damping ratio ζ and period T. Otherwise, X(t) is the response of a
simple oscillator with cubic nonlinearity. The random variables
S T π T X t( ) = (2 / ) max | ( )|t τa

2
0≤ ≤ sdof and D X t= max | ( )|t τ0≤ ≤ are dependent

since they are functionals of the same input, the seismic ground
acceleration process A(t).

The dependence between S T( )a and D varies with the intensity of
the ground motion and the magnitude of the nonlinear stiffness
component. For small seismic excitation, the contribution of the cubic
nonlinearity ν βX t( )0

2 3 to the displacement X(t) of the Duffing oscillator
is insignificant so that X(t) should be similar to the displacement
X t( )sdof of the associate linear oscillator β( = 0). In this case, the
dependence between S T( )a and D is expected to be strong so that
S T( )a is a very good IM. For large seismic excitations, the cubic
nonlinearity ν βX t( )0

2 3 contributes to X(t) so that both the frequency
contents and the distributions of X(t) and X t( )sdof differ. For example, if
A(t) is a Gaussian process, then X t( )sdof and X(t) are Gaussian and non-
Gaussian processes. In this case, the correlation between S T( )a and D is
expected to be weaker so that Sa(T) is a less satisfactory IM.

These observations are consistent with the numerical results in
Fig. 1 which show n=500 independent samples of the random vector
S T π T D( ( )/(2 / ) , )a

2 for a Duffing oscillator with ν π= 20 , ζ = 0.05, and
β = 3 that is subjected to a stationary Gaussian band-limited white
noise (BLWN) A(t) with mean 0, variance 1, and frequency band [0, 10]
during the time interval [0, 20]. The system is at rest at the initial time.
The left, middle, and right panels are for ground accelerations A(t)
scaled by 1, 5, and 10. For small ground excitations corresponding to a
scale factor of 1 (left panel), the dependence between S T π T( )/(2 / )a

2 and
D is nearly perfect (the estimated correlation coefficient is almost 1).
The differences between the responses X(t) and X t( )sdof are negligible.
For large ground excitations corresponding to a scale factor of 10 (right
panel), the dependence between S T π T( )/(2 / )a

2 and D is weaker (the
estimated correlation coefficient is 0.8107). The middle panel corre-
sponds to moderate earthquakes, the scale factor is 5. It represents a
transition between the extreme cases in the left and right panels.

The plots in Fig. 1 show, in agreement with findings in [10], that
Sa(T) can be viewed as a satisfactory IM for the Duffing oscillator. We
attribute this performance to the fact that the Duffing oscillator is a
conservative SDOF structure whose stiffness is a perturbation of the
stiffness of the associated linear SDOF β( = 0) and matches the stiffness
of this system for small displacements. Yet, even in this very favorable

Fig. 1. Scatter plots of n=500 independent samples of S T π T D( ( )/(2 / ) , )a 2 for β = 3 and a stationary Gaussian BLWN A(t) with mean 0, variance 1, and frequency band [0, 10] scaled by 1,

5, and 10 (left, middle, and right panels).
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