
Multi-model polynomial chaos surrogate dictionary for Bayesian
inference in elasticity problems

Andres A. Contreras a,n, Olivier P. Le Maître a,b, Wilkins Aquino a, Omar M. Knio a,c

a Duke University, Durham, NC, United States
b LIMSI-CNRS, Orsay, France
c King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

a r t i c l e i n f o

Article history:
Received 2 April 2016
Received in revised form
17 June 2016
Accepted 1 August 2016
Available online 19 September 2016

Keywords:
Bayesian inference
Model selection
Uncertainty quantification
Polynomial chaos
Elasticity imaging
Soft tissue

a b s t r a c t

A method is presented for inferring the presence of an inclusion inside a domain; the proposed approach
is suitable to be used in a diagnostic device with low computational power. Specifically, we use the
Bayesian framework for the inference of stiff inclusions embedded in a soft matrix, mimicking tumors in
soft tissues. We rely on a polynomial chaos (PC) surrogate to accelerate the inference process. The PC
surrogate predicts the dependence of the displacements field with the random elastic moduli of the
materials, and are computed by means of the stochastic Galerkin (SG) projection method. Moreover, the
inclusion's geometry is assumed to be unknown, and this is addressed by using a dictionary consisting of
several geometrical models with different configurations. A model selection approach based on the
evidence provided by the data (Bayes factors) is used to discriminate among the different geometrical
models and select the most suitable one. The idea of using a dictionary of pre-computed geometrical
models helps to maintain the computational cost of the inference process very low, as most of the
computational burden is carried out off-line for the resolution of the SG problems. Numerical tests are
used to validate the methodology, assess its performance, and analyze the robustness to model errors.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The nondestructive characterization of the parameters de-
scribing a physical system is a task of great importance and in-
terest in various disciplines within science and engineering. Ex-
amples of such tasks include seismic imaging [1,2], health mon-
itoring of infrastructure [3–5], and more recently elasticity imaging
[6,7]. Elasticity imaging is a very promising branch of medical di-
agnosis which applies inverse problem techniques to compute the
elasticity modulus given a set of measurements of a displacement
or velocity field that is the result of some excitation force [8]. The
idea is inspired by the palpation technique used by doctors to
determine the presence of abnormal tissue through the sense of
touch [9,10]. Palpation, however, is limited in detecting anomalies
that lie deep in the body or which are too small [11]; moreover, it
tends to be qualitative as opposed to quantitative. Elasticity ima-
ging takes palpation to the next level by extending its range and
effectiveness, all in a more quantitative manner. The general goal
of this work is to use a collection of models within a Bayesian
framework to estimate the contrast between the elastic properties

of different regions in a given domain.
The elasticity imaging technique encompasses three basic

steps: first, the body is deformed through an applied external load,
then the deformation field is measured (e.g. using ultrasound
techniques), and finally the elastic properties are estimated by
solving an inverse problem. To approach this problem, Oberai et al.
[8] assume that the displacements are governed by the equations
of equilibrium of an incompressible, linear-elastic solid under-
going small, quasi-static deformation, and cast the problem as a
non-linear optimization problem; the objective is to find a shear
modulus field that minimizes the discrepancy between the mea-
sured and predicted displacement fields. Another optimization
approach is based on minimizing the modified error in con-
stitutive equation functional [12], which measures the discrepancy
in the constitutive equations that connect kinematically ad-
missible strains and dynamically admissible stresses in addition to
measuring the discrepancy between the measured and predicted
displacement fields. Other approaches include direct inversion
methods [13–15], but these methods, although computationally
less expensive, tend to be more sensitive to noise in measurement
data. All these approaches are deterministic, and consequently
result in a single estimate of the elastic modulus, which does not
accommodate for the quantification of uncertainty.

Important insights emerge by approaching inverse problems
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using a probabilistic framework. Some of the methods introduced
to deal with this problem include the extended maximum like-
lihood method [16], the spectral stochastic method [17,18], the
sparse grid collocation approach [19,20], stochastic reduced order
models [21], and the Bayesian inference approach [22,23]. In the
Bayesian formalism, one obtains additional insight by computing a
probability distribution that summarizes all available information
about the elastic moduli (e.g. we can estimate moments, marginal
distributions, and quantiles), as opposed to the single value ob-
tained in the deterministic setting. Specifically, in the context of
elasticity imaging, Koutsourelakis [24] use a Bayesian framework
to obtain probabilistic estimates of the material properties that
account for various possible sources of uncertainty; this work
deals with simplified geometries and large contrast ratio of the
elastic properties. Another interesting approach is proposed by
Iglesias et al. [25], where the Bayesian framework is applied under
an infinite dimensional setting; this work, however, is limited to
deterministic (known) elastic properties and it requires an ap-
propriate prior model.

For complex forward models, extracting information from the
posterior distribution can be very computationally expensive.
Several techniques are applied to address this computational
challenge, such as the use of a two-stage MCMC to increase the
acceptance rate of the algorithm by using an inexpensive ap-
proximation of the posterior distribution [26–28]; the use of
proper orthogonal decomposition (POD) to construct a reduced-
order model for the direct simulations [29,30]; the use of adaptive
hierarchical sparse grid collocation (ASGC) to obtain an approx-
imate stochastic solution to the forward problem using piecewise
linear interpolation [31]; and the use of polynomial chaos (PC) to
approximate the solution of the stochastic forward model either
through collocation [32,33] or through the stochastic Galerkin
method [34]. A related application of PC representations in the
context of inverse acoustic scattering problems is found in [35],
where PC expansions are integrated with optimization methods
for the probabilistic characterization of hidden obstacles and in-
clusions in acoustic media.

The objective of this work is to develop a method that can be
used in a diagnostic device with a low computational power to
quickly assess the presence of an inclusion in a given domain. To
achieve this, the proposed approach breaks the process in two
steps: (1) an offline or pre-processing step where surrogate
models are constructed for different geometrical models and
(2) an online step where a model selection and inference are
performed on the basis of observations to assess the presence of
an inclusion. This is advantageous, since the main computational
cost is carried by the construction of the surrogate models, which
is something that can be done offline with a dedicated computer.
Thus, once the surrogate models have been constructed, the
computational cost of the model selection and inference problem
is relatively low and can be effectively handled by the diagnostic
device with limited computational power. In more details, we
extend the Bayesian approach proposed by Marzouk et al. [34] to
the case of multiple geometrical models as follows. First, a dic-
tionary of inclusion geometries is considered and for each of these
geometries a suitable polynomial chaos expansion of the dis-
placement field is computed, in terms of the unknown parameters
(in our case Young's modulus and Poisson's ratio in soft matrix and
inclusion) by means of the stochastic Galerkin (SG) method
[36,37]. The SG allows for a fine control approximation error.
When observations are made available, the PC surrogates can be
used to derive corresponding approximations of the posterior
distribution for the elastic properties given a geometry. Then,
these posteriors can be compared by computing the evidences or
Bayes factors of the geometrical models, in order to rank them and
select the best one (or few best ones). The posterior distribution

(s) of the elastic properties for the best model (or best ones) can
then be used to reach a decision confirming or refuting the pre-
sence of an inclusion, analyzing for instance the ratios between
the mean properties in the inclusion and soft matrix domains.

The outline of the paper is as follows. In Section 2, we introduce
the mechanical model of the elasticity problem and derive the
polynomial chaos expansions of the displacement field for a given
geometry. In Section 3, we describe the use of the Bayesian fra-
mework to solve both inverse problem and the model selection
problem. In Section 4 we present some numerical results showing
the behavior of the approach when the exact geometry of the
model is known. Then, in Section 5, we look at the case when the
exact model geometry is unknown and construct a dictionary of
surrogate models and rank them based on the evidence provided
by the data; also we test the robustness of the approach with re-
spect to errors in the mechanical model. Finally, in Section 6 we
provide concluding remarks.

2. Physical model and polynomial chaos expansion

2.1. Physical model

2.1.1. Continuous problem
The strong form of the equilibrium equations of a linear-elastic

solid undergoing static deformation due to boundary loads and
displacements can be expressed as:

σ Ω∇· = ( )0 in 1

with boundary conditions:

σ τ Γ Γ· = = ( )τn u uon , on , 2u0

where σ ϵ ϵ= ≡ : ijkl kl is the stress tensor; ϵ( ) = (∇ + ∇ )u u u /2T is
the linearized strain tensor; u is the displacement field; n the unit
normal to the boundary; τ is the traction vector; Ω is the spatial
domain; Γτ and Γu form a partition of the boundary Γ of Ω; u0 is
the essential boundary condition; and  is the fourth-order con-
stitutive tensor of linear elasticity. Under the assumption of an
isotropic medium, the constitutive tensor has only two in-
dependent elastic constants and can be written as:

( )λδ δ μ δ δ δ δ= + + ( ) 3ijkl ij kl ik jl il jk

where δij is the Kronecker delta and λ and μ are the Lamé con-
stants [38]. This decomposition of  is very advantageous for the
computation of the PC coefficients described in Section 2.2.1.

The forward problem consists in finding the displacement field
u that satisfies (1) for a given constitutive tensor  (i.e. known
material properties). The weak formulation of the forward pro-
blem is obtained after defining the space of trial functions,

{ }Ω Γ= | ∈ ( ) = u u uu H , oni u0
1 , and the space of test functions,

{ }Ω Γ= | ∈ ( ) = v v 0v H , oni u
1 . Multiplying (1) by an arbitrary

∈ v , integrating over the spatial domain, using the divergence
theorem, and the symmetry of  we get:

( ) ( )τ= ∀ ∈ ( )u v v va , , , , 4

where

∫ ∫ϵ ϵ τ τΩ Γ≡ ( ) ( ) ≡ ·
( )Ω Γ

τ
τ

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟u v v u v va d d, : : , , .

5

The function ∈ u that satisfies (4) is the equivalent weak
solution of (1).

2.1.2. Finite element formulation
Using standard Voigt notation [39], the displacement fields, test
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