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Especially in geotechnical engineering, a high level of uncertainty in the design of structures is present.
Standards and guidelines recommend the observational method for projects with a high level of un-
certainty and when the geotechnical behaviour is difficult to predict. The behaviour of a complex geo-
technical problem is measured in each constructions step and these measurements are compared to
simulation results. As a next step one compares the used model parameters and assumptions. In case of
big differences, one adapts the system in order to improve it for the next construction step. However, this
design approach is based on engineering judgement in combination of deterministic approaches, which
are adapted sequentially whenever new observations are available. This formulates the need for a sound
mathematical and statistical framework, which allows to combine measurement to quantify forecast
uncertainty.

This paper explains two mathematical concepts for data assimilation. The sequential and variational
data assimilation consider a stochastic system, which is updated by uncertainty observations. These
concepts reduce the simulation uncertainty by using observations. Two case studies show the applica-
tions of both concepts in geotechnical engineering problems. The first case study is discussing the
possibilities and limitations of the sequential data assimilation concept in a theoretical example, whereas
the second case study is demonstrating the combination of settlement measurements and a stochastic
subsoil model by means of variational data assimilation. Additionally, the concept of forecast uncertainty
quantification is demonstrated in the second case study. At the end a brief review of the data assumption
concepts and the given forecast uncertainty quantification approach is given together with conclusions
for further research.
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1. Introduction

Design and construction of geotechnical structures often in-
volve a wide range of uncertainties, which are generally associated
with the interpretations and assessment of geotechnical properties
from a set of data. Eurocode 7 [2] recommends to use the ob-
servational method (OM) in projects with a high level of un-
certainty and when the geotechnical behaviour is difficult to pre-
dict. This design approach enables the engineer to address the
uncertainties by continuously predicting, observing and altering
the design during construction [17]. Since Peck [16] first for-
mulated the design philosophy of the OM, this design methodol-
ogy has been contentiously refined and improved. The major
principles of the OM are to initially assess acceptable limits of
behaviour and the range of possible behaviour for a structure,
subsequently followed by monitoring and evaluation of the actual
behaviour. During the design phase, it is of great importance that
prospective deviations in geotechnical behaviour and associated
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failure mechanisms are identified so that appropriate actions can
be devised in an early stage of the design process. In case of de-
viation from initial assessments and established limits during
construction, actions have to be preformed according to the plan
elaborated in the design phase.

Up to now, the OM is based purely on expert judgement and on
a deterministic design approach [7,13,16,17,19] amongst others;
recently, some researchers try to incorporate the uncertainty of the
soil properties using standard statistical approaches in a Bayesian
framework as given in [21]. However, the variability of the simu-
lation model is not considered explicitly and the uncertainties of the
observations are not taken into account because they are con-
sidered as small in comparison to the subsoil uncertainty.

In this contribution, I compare two statistical frameworks,
which can consider both uncertainties of the subsoil and of the
observations. Moreover, I show that one can also incorporate the
observations in the probabilistic analysis of a complex geotechni-
cal problem. Additionally, I show how to quantify the forecast
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uncertainty based on methods from numerical weather prediction.
The possibilities and limitations of these approaches are discussed
in case studies, which shall help the reader to grasp the basic ideas
more clearly. This paper ends with a summary and review of the
presented data assimilation approaches and forecast uncertainty
quantification as well as future research steps.

2. Combination of uncertain observations and probabilistic
forecasts

Apart from geotechnical engineering, uncertainties in model
parameters are a dominant source of uncertainty for e.g. hydro-
logical models and models in numerical weather prediction. These
engineering models are approximating complex system, e.g. non-
linear soil behaviour or soil-structure interaction problems, and
these models are therefore not perfect. In contrast, measurements
like deformations are describing the behaviour of an engineering
system more precisely due to their smaller scatter.

The basic idea of data assimilation is to incorporate the in-
formation of both the uncertain simulation model and the im-
precise measurements. Fig. 1 shows the behaviour (or state) of a
system, which is unknown. By using a simulation model for ap-
proximation, the unknown system behaviour, one can derive the
simulation uncertainty using probabilistic approaches. By means
of data assimilation techniques one can calculate the combined
uncertainty by combining the simulation uncertainty and ob-
servation uncertainty. As given in Fig. 1 qualitatively, the combined
uncertainty is smaller than the simulation uncertainty and bigger
than the observation uncertainty. One can employ sequential and
variational data assimilation approaches as described by Evensen
[6] amongst others.

2.1. Sequential data assimilation

One of the most used approaches in sequential data assimila-
tion is the Ensemble Kalman Filter (EnKF). It was originally pro-
posed as a stochastic or Monte Carlo alternative to the Kalman
Filter (EKF) by Evensen [6]. The EnKF has gained popularity be-
cause of its simple conceptual formulation and relative ease of
implementation.

The basic idea of the Ensemble Kalman Filter (EnKF) is the
Kalman Filter. The Kalman Filter is an efficient framework to up-
date the modelling system x, which is also called forecast system,
by observations y. This linear update of the state of the system x is
given in Eq. (1). Herein, the state of the system x is a vector
consisting of all variables, which are describing the conditions of
the system (like model parameters and/or deformations). The
posterior estimate of the state of the system Xx® is given by
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Fig. 1. Concept of data assimilation with the uncertainty of the simulation, the
observation and the combined uncertainty for a given state.

x*=x'+ K(y - fo) a)
and the analysis error covariance P? is given by
P? = (I - KH)P/ )

where X/ is the prior estimate with n state variables, y is the
observation vector of m observations, H is the observation op-
erator matrix (dimension m x n) which maps state variables to
observations like deformation measurements, I is an identity
matrix (dimension n x n), and P/ is the forecast background error
covariance (dimension n x n). The Kalman gain matrix K (di-
mension n x m) is defined as

K = P/H'(HP'H +R) 3

where R is the observation error covariance (dimension m x m).
P/H' is the predicted covariance between the states and observed
variables, and HP/H' is the predicted error covariance of the ob-
served variables; this predicted error covariance is quantifying the
forecast uncertainty of the system, which is represented by the
state vector X.

Note that the Kalman Filter is only correct for linear systems.
This drawback can be overcome through the Monte-Carlo ap-
proach within the Ensemble Kalman Filter. Herein, a sufficient
large ensemble consisting of random samples is used to represent
the system behaviour, which allows the modelling of non-linear
systems in various fields such as atmospheric or oceanic sciences
[6]. This implies that the vector and matrices of the equations
above become large, which states a computational challenge for
large and complex systems. These computational requirements are
affordable and comparable to other popular sophisticated assim-
ilation methods such as the variational data assimilation method,
as stated by Evensen [6].

2.2. Variational data assimilation

The basic idea of variational data assimilation is to find the
initial conditions of a model, such as to minimize some scalar
quantity J. The cost function J[x] is a function of the state vector x,
which is a vector of all variables describing the conditions of the
system like model parameters and/or deformations. The cost
function defines a global measure of the simultaneous misfit be-
tween X, the current guess of the model state, and to the ob-
servations y. The cost function J simultaneously penalizes a bad fit
between the model state x and the background, and the model
state and the predicted observations, given in the following
equation:

Jix1 = H(x = %) B(x = x) + (y - HxX) Ry -Hx) @

where B is the background error covariance matrix, y is the set of
observations made at time t and R is the observational error
covariance matrix. The vector y — Hx is the residual. The covar-
iance matrix P? of the resulting state vector x? is equal to the
inverse of the Hessian matrix of the objective function evaluated
at x%

Using variational data assimilation, one assumes that the errors
are unbiased and standard normally distributed. Additionally, the
model is assumed to represent the system behaviour perfectly.
Amongst others, Evensen [6] states that 3D-VAR stands for the
variational data assimilation, in which no account is taken of the
time that observations are taken. The three dimensions are spatial.
4D-VAR stands for variational data assimilation within three space
dimensions plus one time dimension.

Evensen [6] reports that the drawback of the variational
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