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a b s t r a c t

Many statements about the quality of a numerical model can only be made by including the appropriate
experiments (e.g. the quantification of the statistical uncertainties of model input parameters while
calibrating the confidence level estimator model, which is heavily dependent on the definition of the
experiment and the quality of its implementation). Focus is thus placed on developing methodology for
quantitatively assessing the quality of the results of experiments and their exemplary implementation.

This paper presents a qualitative evaluation method for experimental results. The probabilistic ap-
proach in particular can provide substantial information during the evaluation. Therefore, methodology
for predicting the uncertainty in the qualitative evaluation of experimental models. An appropriate way
to propagate probability density functions through an experimental model is based on the Monte Carlo
Method (MCM). The probability distributions are obtained by applying the MCM coupled with appro-
priate definitions for the total measurement uncertainty. This paper elaborates on the computational
aspects of calculating measurement uncertainty of experimental models. The MCM has a higher con-
version rate, generates narrower intervals, and produces more stable (evaluation) results. This method
should reduce the analytical effort required for complicated or nonlinear models, especially because
partial derivatives of the first or higher order (used in providing sensitivity coefficients for the law of
propagation of uncertainty) are required. This method thus provides a mathematical and a computa-
tional tool for quantifying the uncertainty of models. Moreover, it can be used to improve measurements
in order to promote quality and capacity with respect to decision-making.

& 2016 Published by Elsevier Ltd.

1. Introduction

Experimental and numerical models are required to reliably
assess the safety and usability of newly constructed and existing
structures. The quality of numerical and experimental models
must be evaluated in order to reliably predict structural behaviour
and design. Many statements about the quality of a simulation
model can only be made by including the appropriate experiments
(e.g. the quantification of the statistical uncertainties of model
input parameters during the calibration of the confidence level
estimator model, which is heavily dependent on the definition of
the experiment and the quality of its implementation). Me-
trological aspects should therefore be used in order to guarantee
the equivalence of results between different laboratories and
evaluate the measurement or simulation results. However, meth-
odology for quantitatively assessing the implementation and re-
sults of experimental models is lacking. Furthermore, the

quantitative assessment of the behaviour and performance of
materials is essential for achieving reliable high-quality products.
Experimental models have been to:

� validation of theoretical/numerical models,
� determination of required input parameters for these theore-

tical/numerical models,
� calibration of input parameters.

When validating models, experimental models are used to both
quantitatively and qualitatively compare the results of simulations.
The experimental results often only consider the aleatoric un-
certainties as a target for the simulation. A consistent and quan-
titative evaluation of experimental error or the experimental
model itself is often neglected.

Experimental models are composed of different partial models
(PMs), such as specimen, boundary, and load conditions or sensor
technology. Because these PMs are correlated quantification of the
quality of all PMs is crucial for evaluation the quality of the global
experimental model. An experimental model illustrates a reality

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/probengmech

Probabilistic Engineering Mechanics

http://dx.doi.org/10.1016/j.probengmech.2016.04.005
0266-8920/& 2016 Published by Elsevier Ltd.

n Corresponding author.
E-mail address: hbmotra@gmail.com (H.B. Motra).

Please cite this article as: H.B. Motra, et al., The Monte Carlo Method for evaluating measurement uncertainty: Application for determining
the properties of materials, Probabilistic Engineering Mechanics (2016), http://dx.doi.org/10.1016/j.probengmech.2016.04.005i

Probabilistic Engineering Mechanics ∎ (∎∎∎∎) ∎∎∎–∎∎∎

www.sciencedirect.com/science/journal/02668920
www.elsevier.com/locate/probengmech
http://dx.doi.org/10.1016/j.probengmech.2016.04.005
http://dx.doi.org/10.1016/j.probengmech.2016.04.005
http://dx.doi.org/10.1016/j.probengmech.2016.04.005
mailto:hbmotra@gmail.com
http://dx.doi.org/10.1016/j.probengmech.2016.04.005
http://dx.doi.org/10.1016/j.probengmech.2016.04.005
http://dx.doi.org/10.1016/j.probengmech.2016.04.005
http://dx.doi.org/10.1016/j.probengmech.2016.04.005


bound by certain restrictions and definitions in the context of a
scientifically manageable theory. In general, not all aspects of
reality can be described with experimental models. Therefore,
experimental modelling is often referred to as abstraction. In this
context, a PM describes the partial aspects of a global experi-
mental model.

Measurements always entail uncertainty. Measurement results
can therefore not be used directly. The uncertainty analysis should
take into consideration the measurement method, measurement
devices, measurement process, human error, and mathematical
analysis (e.g. data modelling, uncertainty analysis, parameter es-
timation, hypothesis test, precision evaluation) [1]. The applic-
ability of the method for calculating uncertainty should therefore
be reviewed and verified in order to evaluate the assessment of
experimental models in the field of engineering.

At present, there is no scientifically-based methodology for
quantitatively assessing the quality of an experimental model.
Apart from a few specialised exceptions [2–6] the qualitative
evaluation of experimental models in civil engineering solely been
based on the practical phenomenological knowledge of the user. In
experimental modelling, there are numerous experimental models
with different complexities [7].

Experimental models are fundamental for guaranteeing the
quality of scientific and industrial activities. The results of such
measurements must be valid, comparable, and reproducible; their
uncertainty is the quantitative measurement that expresses the
quality of such results. Generally, when a parameter or value has
to be compared with a limit or threshold, a simple mathematical
comparison between two values should be avoided. In fact, the
result of any measurement is affected by uncertainty. The analysis
of conventional uncertainty via the Root Sum of Square (RSS)
method is often difficult in complex systems and requires ap-
proximation at each stage of processing, thereby placing serious
doubts on the validity of the results. In accordance with the ISO/
IEC 17025:1999 [8] standard, all calibrations or testing laboratories
must have and apply procedures to evaluate uncertainty in mea-
surement as a guarantee of their technical competence. In order to
perform this evaluation, the ISO 98:1995 guide, which is com-
monly known as the “Guide to the Expression of Uncertainty in
Measurement” (GUM) [9], has been widely used and accepted by
the metrological accreditation organization. Various supplements
to the GUM are being developed. These will progressively come
into effect. In the first of these supplements (GUM S1) [10], an
alternative procedure for calculating uncertainties is described:
the Monte Carlo Method (MCM). This include non-symmetric
measurement uncertainty distributions, non-linearity within the
measurement system, input dependency, and systematic bias. The
main elements of the formalism were originally proposed by
Weise et al. [11]. The procedure was then succinctly outlined by
[12] and focused on its relation to MCM described by JCGM2008
[10]. Wübbeler et al. [4] explained similarities and differences
between the GUM and GUM S1 approaches. Many groups have
recently applied Bayesian updating to evaluate measurement un-
certainty (e.g. [11,13–18]). Several books [19–21] also discuss issues
relevant to this general evaluation method. The approach in-
troduces a state of knowledge distribution about the quantity on
interest and is derived from prior information about the quantity
as well as other influencing quantities and measured data, using
probabilistic inversion or inverse uncertainty evaluation.

The standard uncertainty of an experimental model decreases
if available of data set increases. Conversely, the cumulative un-
certainty of the data set increases as the amount of available data
decreases. Hence, the final uncertainty of the measurement, which
is the degree of standard uncertainty and systematic and random
deviation, does not monotonically decrease. Consequently, for
each data set, an optimal model complexity in which the

complexity of the models is directly related to the number of
variables used by the model must be determined [22]. In the field
of experimentation, it is difficult to determine the optimal model
[23–25].

Despite the need, there are no scientific studies about the
qualitative evaluation of the global experimental model. Thus, the
development of a new method is urgently needed, especially for
the qualitative assessment of experimental models in the field of
engineering. One of the reasons for this has to do with the spe-
cified requirements for the investigated models, which require
deterministic and probabilistic analysis. Although there are many
models that could be used to represent physical reality, they are
not applicable because of the high experimental costs. Therefore,
an experimental model of qualitative analysis based on reducing
the uncertainty and cost of experiments and increasing the relia-
bility and robustness of experimentation is developed.

2. Propagation of distribution by the Monte Carlo

For the detailed descriptions of GUM procedure refer to
[3,8,9,17,19]. The MCM only defines those probability functions
considered by JCGM2008 [10] that have a univariate Gaussian
portability density. The MCM provides a general approach for
numerical approximation to the distribution function η( )gY for the
output quantity:
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1 2 . The
distribution function for output quantity Y obtained from Monte
Carlo simulation is defined as [10,26]:
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The probability density function is defined as:
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where δ is the Dirac function, ξ( )gX ii
, and = …i N1, , , are the

probability density function of the input quantities = …X i N, 1, , .i

Measurement uncertainty matrix is given by:
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This probability density function reduces to the product of N
univariate Gaussian probability density functions when there are
no covariance effects for the following equation. In that case,
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An uncertainty matrix Ux with vector estimate x and input
quantities can be expressed by covariance matrix
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where μ ( )xi
2 is the variance (squared standard uncertainty) asso-

ciated with xi and μ ( )x xi j is the covariance associated with xi and
xj. μ ( ) =x x, 0i j if elements are uncorrelated.
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