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a b s t r a c t

The reliability of systems with moving cracked elastic and isotropic material is considered. The material
is modeled as a moving plate which continually has a crack on the edge. The plate is subjected to
homogeneous tension acting in the traveling direction and the tension varies temporally around a
constant value, the set tension. The tension and the length of the crack are modeled by an Ornstein–
Uhlenbeck process and an exponential Ornstein–Uhlenbeck process, respectively. Failure is regarded as
the state at which the plate becomes unstable or fractures (or both) and a lower bound for the reliability
of the system is derived. Considering reliability of the system leads to first passage time problems and, in
solving them, a known explicit result for the first passage time of an Ornstein–Uhlenbeck process to a
constant boundary is exploited. A change in the set tension has opposite effects on the probabilities of
instability and fracture, and a safe range of set tension is studied. Numerical examples are computed for
material and machine parameters typical of paper and printing presses. The results suggest that tension
variations may significantly affect the pressroom runnability.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Models of axially moving continua are commonly used to de-
scribe mechanical systems in industry, such as band saws, trans-
mission chains or moving paper webs in printing presses. Thus, a
large amount of research have been dedicated to the mechanics of
axially moving media, with different mechanical and material
models. The most common models of axially moving materials are
traveling flexible strings, membranes, beams and plates. The first
paper on axially moving materials dates back to 1897, when
Skutch [1] published a paper concerning the elastic string model.
Studies of moving elastic strings were continued by Sack [2] and
Archibald and Emslie [3], who were also the first published au-
thors on axially moving materials in English. Later studies of axi-
ally moving materials concern, e.g., stability of traveling two-di-
mensional elastic [4,5], orthotropic [6,7] and viscoelastic [8,9]
plates. Extensive literature reviews on the studies of axially mov-
ing materials can be found in [5,7,9].

Although random variations may be significant when the per-
formance of the system is considered, only a few studies of axially
moving materials with a stochastic setup can be found in the lit-
erature. In studies by Tirronen et al. [10,11] and Banichuk et al.
[12], an axially moving elastic and isotropic cracked plate was
studied in the case in which parameter values include uncertainty.

The problem parameters were modeled by random variables, and
critical regimes were obtained for velocity and tension, to which
the plate was assumed to be subjected. However, in [10,12,11]
longevity of the system was not considered, although it is of in-
terest from the practical point of view. Temporal variations were
not addressed in [10,12,11] although, e.g., in a printing press ten-
sion is known to vary with respect to time [13].

The present paper extends [10–12] by modeling randomly
varying problem parameters as stochastic processes, which pro-
vide natural models for temporal stochastic variations of the sys-
tem and enable examination of its longevity. In this paper, the
tension variations are described by a stationary Ornstein–Uhlen-
beck process. With this model, the tension has a constant mean
value, the set tension, around which its value fluctuates tempo-
rally. The Ornstein–Uhlenbeck process can be considered as the
continuous-time analogue of the discrete-time AR(1) process, the
simplest model for a time series in which data points have de-
pendency. It provides a mathematically well-defined continuous-
time model for fluctuations of systems whose measurements
contain white noise [14, Chapter 4]. Moreover, a stationary process
describes random fluctuations of a system which has settled down
to a steady state and whose statistical properties do not depend on
when they are measured [14, Sections 3.7]. In a printing press, the
draw variations contain specific high/low frequency components
as well as white noises [13]. In addition, tension surges are likely
to occur during start-up and shutdown operations [15]. The sta-
tionary Ornstein–Uhlenbeck process can be regarded as a
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simplified model of tension variations in a pressroom.
Another stochastic quantity in the considered model is related

to fracture. The plate is assumed to continually have a weak spot
caused by a defect fromwhich a fracture begins to propagate if the
tension value is too high. Defects in a paper web can be classified
into two categories: microscopic defects, which originate from the
natural disorder of paper such as variations of fibre orientation
and density, and macroscopic defects introduced during the pa-
permaking and transportation processes [16]. Macroscopic defects
include, e.g., edge cracks. Such cracks may occur as a consequence
of insufficient roll edge protection during handling and storage
[17]. A cut or nick in the edge of the roll may cause multiple edge
cracks in the sheet in a localized area. Edge cracks may also occur
randomly in the sheet and be caused by stress formed from run-
ning a high roll edge through a nip [17].

In this study, defects of the material are modelled as cracks. It is
assumed that the lengths of the cracks are typically small com-
pared to the width of the plate. As sharp edge cracks perpendicular
to the travelling direction are most critical in terms of fracture,
such cracks are considered. Moreover, the crack lengths are
modeled by a stationary exponential Ornstein–Uhlenbeck process
which is assumed to be independent of the process describing
tension. With the exponential Ornstein–Uhlenbeck process, the
length of a single crack obeys lognormal distribution.

In this study, reliability of the system is of interest. Failure is
considered as a state at which the plate becomes unstable or
fractures (or does both). For instability, the results obtained in [5]
are utilized. To study fracture of the plate, linear elastic fracture
mechanics (LEFM) is applied. The probabilities that the plate re-
mains stable and does not fracture are considered separately, and a
lower bound for the reliability of the system is obtained.

Considering the probability of stability leads to a first passage
time problem. In solving it, the spectral expansion of the first
passage time distribution of an Ornstein–Uhlenbeck process to a
constant boundary given in [18] is exploited. By using the analy-
tical expression for the first passage time distribution one avoids
discretization error that would result from plain Monte Carlo
simulation.

The probability that the plate does not fracture is a solution to a
first crossing time problem of two stochastic processes. This
probability may be approximated from below by the probability
that the tension does not hit the minimum critical tension ob-
tained from the process describing the length of the crack. Thus,
the result for the first passage time to a constant boundary may
also be exploited in obtaining a lower bound for the probability
that the plate does not fracture.

The model is studied for material and machine parameters
typical of paper and printing presses. The effect of the parameters
of the stochastic quantities on the reliability of the system is in-
vestigated numerically. As a change in the set tension has opposite
effects on the probabilities of instability and fracture, a safe range
of set tension is also studied.

A web break is an important runnability issue in pressrooms
[19] and reducing the number of web breaks is a major concern.
Accordingly, the web break is a widely investigated subject in the
pulp and paper industry [13]. However, web breaks are rare
events, and experimental studies require data from a large number
of rolls to determine the causes of web breaks [19]. Thus, mathe-
matical modeling may provide an efficient tool to study system
performance.

This study aims at developing mathematical models and tech-
niques for estimating the reliability of systems with moving
cracked material. Combined with data of defects and tension, the
models developed in this study can be used for predicting the
reliability of systems with moving material in terms of fracture
and instability. For printing processes, such data can be obtained

by automated inspection systems developed for quality control
[20] and devices designed for tension profile measuring [21].

2. Problem setup

Considered here is a system in which a cracked elastic and
isotropic band travels, at some state, unsupportedly from one
roller (support) to another and is subjected to tension acting in the
traveling direction. In this section, a mathematical model for the
moving band is presented. The model described below is similar to
the deterministic one presented in [5].

To study the behavior of the band, consider a rectangular part
of it that occurs between the supports

x y x b y b, : 0 , 1= {( ) < < ℓ − < < } ( )

in x, y coordinates (see Fig. 1). It is assumed that between the
supports the band travels in the x direction with constant velocity
V 00 > . Above, ℓ is the length of the span between the supports and
b is half of the band width.

The part is modeled as an elastic and isotropic plate having
constant thickness h and mass m (per unit area of the middle
surface of the plate). The sides of the plate

x b y b x b y b0, and , 2{ = − < < } { = ℓ − < < } ( )

are assumed to be simply supported, and the sides

y b x y b x, 0 and , 0 3{ = − < < ℓ} { = < < ℓ} ( )

are free of tractions. Moreover, the plate has a constant Poisson
ratio ν and Young modulus E.

We study the probability that a band of given length travels
through the system of rollers without failure. In this, it is assumed
that the material continues and remains similar after the con-
sidered band.

2.1. Tension

The plate element (1) is subjected to homogeneous tension
acting in the x direction. Temporal fluctuations of tension are
modelled by a continuous-time stochastic process

T T s s, 0 4= { ( ) ≥ } ( )

in a probability space , ,Ω( ). In (2), s denotes the length of the
part that has travelled through the open draw, see Fig. 1.

Furthermore, we describe the tension by a stationary Gaussian
Markov process. For definitions of stationarity and the Markov
property, see [14, Sections 3.7 and 3.2], respectively. By a sta-
tionary process one describes the random fluctuations of a system
which has settled down to a steady state and whose statistical
properties do not depend onwhen they are measured [14, Sections

Fig. 1. The part of the band that is traveling between the supports is modeled as a
moving plate that is tensioned at the supported edges by homogeneous tension T
(s). The drawing is adapted from Fig. 1 in [10].
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