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University in Prague, Technická 4, 166 07 Praha 6, Czech Republic,
tomas.vyhlidal@fs.cvut.cz

Abstract: We follow a polynomial approach to analyse strong stability of linear difference
equations with several independent delays. Upon application of the Hermite stability criterion
on the discrete-time homogeneous characteristic polynomial, assessing strong stability amounts
to deciding positive definiteness of a multivariate trigonometric polynomial matrix. This latter
problem is addressed with a converging hierarchy of linear matrix inequalities (LMIs). Numerical
experiments indicate that certificates of strong stability can be obtained at a reasonable
computational cost for state dimension and number of delays not exceeding 4 or 5.
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1. INTRODUCTION

In general, spectrum-based analysis of time-delay systems
can be handled in the same way it is done for delay-free
systems. Although the spectrum is infinite, stability is
determined by the rightmost eigenvalues, more precisely
by the sign of the spectral abscissa, the maximum real
part of the eigenvalues. For retarded systems, the spectral
abscissa is nonsmooth but continuous in all parameters of
the system, including time delays, see Vanbiervliet et al.
(2007). However, it results from Henry (1974); Avellar and
Hale (1980); Hale and Verduyn Lunel (1993, 2002), that,
in general, it is not the case for neutral systems and kernel
operators - the so-called associated difference equation, see
also Michiels et al. (2002); Michiels and Vyhĺıdal (2005);
Michiels and Niculescu, (2007). It is well-known that the
spectral abscissa of the difference equation is not continu-
ous in delays. Thus, arbitrarily small changes in the delay
values can destroy stability. Moreover, it can even happen
that the number of unstable roots increases stepwise from
zero to infinity. In order to handle this hypersensitivity of
the stability with respect to delay values, the concept of
strong stability was introduced by Hale and Verduyn Lunel
(2002) for delay difference equations. Let us remark that
the strong stability concept has recently been generalized
by Michiels, et al., (2009) toward difference equations with
dependencies in the delays.

⋆ This research has been supported by the Ministry of Education of
the Czech Republic under Project 1M0567, by the Grant Agency of
the Czech Republic under Project 103/10/0628, and by a bilateral
Czech-French research project Barrande (MEB020915).

As stability of its kernel operator is a necessary condition
for stability of a neutral system, all the hypersensitivity
stability issues are carried over to the stability of neutral
systems. Thus the strong stability test should always be
performed to guarantee practical stability of neutral sys-
tems. However, as will be shown later in the text, the
strong stability test is rather complex. So far, a coarse
numerical implementation of the test without guarantee
or certificate has been used as a rule, see e.g. Michiels
and Vyhĺıdal (2005); Vyhĺıdal et al. (2010). Even though
this brute force based approach works in most cases, it
might fail due to approximation errors in the numerical
scheme. As the main result of this paper we propose a more
rigorous strong stability test that is based on a polynomial
approach, relying on the numerical solution of a hierarchy
of linear matrix inequalities (LMIs).

In the field of time-delay systems, LMIs are usually used as
stability determining criteria resulting from the Lyapunov
time-domain approach, see e.g. Niculescu (2001) or Li et
al. (2008), among many others.

1.1 Problem statement

We consider a neutral system of the following form

d

dt

(

x(t) +

m
∑

k=1

Hkx(t − τk)

)

= A0 x(t) +

p
∑

j=1

Ajx(t − ϑj)

(1)

where x ∈ R
n is the state, τk > 0, k = 1, . . .m and

ϑj > 0, j = 1, . . . p are the time delays. It is well-known,
see Hale and Verduyn Lunel (1993), that a necessary
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condition for stability of neutral system (1) is stability
of the associated difference equation

x(t) +

m
∑

k=1

Hkx(t − τk) = 0. (2)

Moreover, strong stability of equation (2) is required, i.e.
stability independent of the values of the delays, Avellar
and Hale (1980); Hale and Verduyn Lunel (1993). In Hale
and Verduyn Lunel (2002) (Theorem 2.2 and Corollary
2.2), a condition for strong stability is stated as follows:

Proposition 1. Delay difference equation (2) is strongly
stable if and only if

γ0 := max
θ∈[0, 2π]m

rσ

(

m
∑

k=1

Hke−iθk

)

< 1, (3)

where rσ denotes the spectral radius, i.e. the maximum
modulus of the eigenvalues.

Notice that the quantity γ0 does not depend on the value of
the delays, i.e. exponential stability locally in the delays is
equivalent with exponential stability globally in the delays
Hale and Verduyn Lunel (2002).

Let us remark that by homogeneity, the expression of γ0

can be simplified to

γ0 = max
θ∈[0, 2π]m−1

rσ

(

m−1
∑

k=1

Hke−iθk + Hm

)

. (4)

We conclude the section with some properties of the
quantity γ0, see Michiels and Niculescu, (2007); Michiels
and Vyhĺıdal (2005), for more details.

Properties

(1) Stability of difference equation (2) with rationally
independent 1 delays implies strong stability, and vice
versa

(2) In the case of one delay (m = 1),

γ0 = rσ(H1).

(3) In the case of a scalar equation (n = 1),

γ0 =

m
∑

k=1

|Hk|.

(4) A sufficient, but as a rule conservative, condition for
strong stability is given by

m
∑

k=1

‖Hk‖ < 1

where ‖.‖ denotes the matrix Euclidean norm, i.e. the
maximum singular value.

1.2 Computational issues

The problem of solving (3) can be formulated as an
optimization task with the objective to find the global
1 The m numbers τ = (τ1, . . . , τm) are rationally independent if and
only if

∑

m

k=1
nkτk = 0, nk ∈ Z implies nk = 0, ∀k = 1, . . . , m. For

instance, two delays τ1 and τ2 are rationally independent if their
ratio is an irrational number.

maximum of spectral radius over θ ∈ [0, 2π]m. However,
in general the objective function rσ(θ) is nonconvex, i.e. it
can have multiple local maxima. Besides, the function can
be nonsmooth (e.g. at the points where the spectral radius
is determined by more than either one single eigenvalue or
a couple of complex conjugate eigenvalues). The fact that
the function is nonsmooth precludes the use of standard
optimization procedures. Instead, nonsmooth optimization
methods can be used, such as gradient sampling, see Burke
et al. (2005); Overton (2009). However, even though
these methods can handle the problem of nonsmoothness,
they converge to local extrema as a rule. As suboptimal
solutions are not sufficient (the global maximum of the
spectral radius is needed) a brute force method has been
used to solve the task so far, see Michiels and Vyhĺıdal
(2005); Michiels, et al., (2009); Vyhĺıdal et al. (2010).
In the first step, each dimension of [0, 2π]m is discretized
to N points. Then evaluation of (3) consists in solving
Nm times n × n eigenvalue problems. Hence, the overall
cost of one evaluation of γ0 is O

(

Nmn3
)

, see Vyhĺıdal et
al. (2010). If the simplified expression (4) is used, the
computational costs reduces to O

(

Nm−1n3
)

. Obviously,
the complexity of the computation grows considerably
with the number of delays in the difference equation.
Moreover, the risk of missing global extrema due to sparse
or inappropriate gridding cannot be avoided.

2. STRONG STABILITY AND HERMITE’S
CONDITION

Consider the characteristic polynomial

p(z) = det(z0In +

m
∑

k=1

zkHk), (5)

which is homogeneous of degree n in m + 1 variables zk,
k = 0, 1, . . . ,m.

Based on (3), considering zk = ejθk , θk ∈ [0, 2π], k =
1, ..,m, the difference equation (2) is strongly stable if and
only if the univariate polynomial

z0 → p(z)

is discrete-time stable,i.e. it has all its roots in the open
unit disk.

In order to deal with stability of this polynomial, we use a
stability criterion based on the Hermite matrix. It is a Her-
mitian matrix of dimension n whose entries are quadratic
in the coefficients of the polynomial. The Hermite matrix
z1, . . . , zm → H(z) is therefore a trigonometric polynomial
matrix in m variables z1, . . . , zm.

Derived by the French mathematician Charles Hermite in
1854, the Hermite matrix criterion is a symmetric version
of the Routh-Hurwitz criterion for assessing stability of a
polynomial. It says that a polynomial p(z) = p0 + p1z +
· · · + pnzn has all its roots in the open upper half of the
complex plane if and only if its Hermite matrix H(p) is
positive definite. Note that H(p) is n-by-n, Hermitian and
quadratic in coefficients pk, so that the above necessary
and sufficient stability condition is a quadratic matrix
inequality (QMI) in coefficient vector p = [p0 p1 · · · pn].

The standard construction of the Hermite matrix goes
through the notion of Bézoutian, a particular form of
the resultant. A bivariate polynomial is constructed,
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