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Abstract:
In this paper the concept of set invariance for time-delay systems is introduced with a specific
attention to the linear discrete-time case. We are interested in the definition of a D(elay)-
invariant set with respect to a bounded polyhedral subset of the state-space. D-invariance
conditions are derived based on the Minkowski addition in a first stage, and subsequently
translated in feasibility-based tests in order to obtain an efficient computation time.
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1. INTRODUCTION

The invariant set theory is an important topic in math-
ematics and engineering, receiving an increased attention
in control literature related to constrained control systems
or robust control design (see for instance the monograph
Blanchini and Miani (2008), the survey paper Blanchini
(1999) and the references therein). In this paper we are in-
terested in the polyhedral invariant sets (Bitsoris, 1988a).
Even if the complexity of this kind of representation is
higher than in the ellipsoidal case (Kurzhanski and Valyi,
1998), polyhedral sets have the advantage to follow accu-
rately the shape of the limit (maximal/minimal) invariant
sets in different frameworks (Artstein and Rakovic, 2008).

Delay Systems represent a class of systems for which the
reaction to exogenous signals is not instantaneous. Propa-
gation and transport phenomena, communication, hered-
ity and competition in population dynamics are examples
of time-delay systems. Various motivating examples and
related discussions ca be found in Niculescu (2001); Gu
et al. (2003); Michiels and Niculescu (2007). The con-
cept of set-invariance for time-delay systems is difficult to
characterize. To the best of the authors knowledge, there
are few references to this problem in the literature. In
Dambrine et al. (1995); Goubet-Bartholomeus et al. (1997)
the existence conditions for set invariance of continuous
time-delay systems are derived using the same arguments
as Bitsoris (1988b,a). In the framework of nonlinear model
predictive control for time-delay systems, Esfanjani et al.
(2009) obtain terminal invariant regions using ellipsoidal
sets.

In the discrete-time case, set invariance for time-delay
systems has been addressed in Olaru and Niculescu (2008);

Lombardi et al. (2009a,b); Gielen et al. (2010). It was
shown that for a system affected by delays can be modeled
as an uncertain polytopic system. A stabilizing feedback
gain and an invariant set can be obtained in an extended
state-space framework, where all the delayed control en-
tries (or states) must be stored. As the dimension of the
augmented state-space depends on the delay and sam-
pling period, it can lead to complicated polyhedral sets,
making the problem intractable. In order to avoid this
inconvenient, Lombardi et al. (2010) proposed a stabiliz-
ing method on the original state-space dimension, based
on Lyapunov-Krasovskii candidates, but the invariant set
treatment is still performed in the extended state space.

The present paper concentrates on set-invariance proper-
ties of polyhedral sets for discrete time-delay systems in
a non-augmented state space framework. The concept of
D-invariance, introduced in this paper, can be understood
as a set-invariance in both current and retarded (delayed)
states. It is shown that the computationally expensive D-
invariance verification method based on Minkowski addi-
tion can be avoided by reducing this problem to a feasibil-
ity problem (and its dual form), related to the half space
representation of the polyhedral sets.

It is worth mentioning that the present work is connected
to the positive invariance of polyhedral sets with respect to
multivariable discrete-time systems described by ARMA
models (Vassilaki and Bitsoris, 1999). In the same time,
part of the invariance conditions for time-delay systems
presented here join the results obtained upon the extended
Farkas’ Lemma in Hennet and Tarbouriech (1998).

Basic notions and definitions: Let R, R+, R
∗, Z, Z+ and

Z
∗ denote the field of real numbers, the set of non-negative
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reals, the set of nonzero real numbers, the set of integer
numbers, the set of non-negative integers and the set of
nonzero integer numbers, respectively. We denote R

n a
Euclidean space and (Rn)d := R

n × R
n × · · · × R

n the d-
times cross product of Euclidean spaces. For every subset
Π of R we define RΠ := {k ∈ R | k ∈ Π} and ZΠ := {k ∈
Z | k ∈ Π}. For an arbitrary number x ∈ R, |x| denotes its
absolute value. For a matrix A ∈ R

r×s, {ai,j} ∈ R denotes
the ith row and jth column element, for i ∈ Z[1,r] and
j ∈ Z[1,s]. For a matrix A, diag(A, k) denotes a diagonal
matrix with k matrices A on the main diagonal and zeros
elsewhere. In denotes the identity matrix of dimension
n × n and 1 denotes a vector of appropriated dimensions
containing exclusively ones. For a vector x ∈ R

n let ‖x‖
denote its Euclidean norm and ‖x‖∞ denotes its infinity
norm, i.e. ‖x‖∞ = maxj∈Z[1,n]

{|xj |}, where xj is the jth

element of x. A polyhedron (or a polyhedral set) in R
n is a

set obtained as the intersection of a finite number of open
and/or closed half-spaces. For two arbitrary sets A ⊆ R

n

and B ⊆ R
n

A⊕ B = {x + y | x ∈ A, y ∈ B}

denotes their Minkowski sum. Given a sequence of subsets
of R

n, i.e. {Ai}i∈Z[a,b]
with a ∈ Z+ and b ∈ Z≥a, we

define
⊕b

i=a Ai := Aa ⊕ · · · ⊕ Ab. For an arbitrary matrix
A ∈ R

m×n and a set P ⊆ R
n, we define:

AP = {y ∈ R
m|y = Ax, x ∈ P}.

For a non-empty closed convex set P ∈ R
n, the support

function S(P, .) : R
n → R is defined by:

S(P, u) = sup
x∈P

〈x, u〉 (1)

where 〈., .〉 denotes the inner product on R
n.

2. PRELIMINARIES ON SET INVARIANCE

Consider the discrete-time autonomous system:

x(k + 1) = f(x(k)), (2)

where x(k) ∈ R
n is the state vector at the time k ∈ Z+

and f : R
n → R

n is a continuous function.

Definition 2.1. Let ε ∈ R[0,1). A set P ⊆ R
n is called

contractive with respect to system (2) if:

f(P) ⊆ εP. (3)

For ε = 1, P is called an invariant set with respect to (2).
�

The next result shows that invariance property is linked
to the classical notion of Lyapunov stability (Hahn, 1967).

Proposition 2.2. If V (x) is a Lyapunov function for the dy-
namical system (2), then the set N (V, c) = {x : V (x) ≤ c}
is an invariant set with respect to the same dynamics.

Definition 2.3. (Blanchini, 1995) Consider a convex and
compact polyhedral set containing the origin:

P = {x ∈ R
n|Fx ≤ w} ,

with F ∈ R
r×n, w ∈ R

r. The polyhedral function
associated to P is called a Minkowski function:

V (x) = max
j∈Z[1,r]

{max {{(Fx)j} , 0}} .

where {(Fx)j} denotes the jth element of Fx. This func-
tion can be seen as a vector infinity-norm (Kiendl et al.,
1992; Loskot et al., 1998):

V (x) = ‖max {Fx, 0}‖∞ .

Remark 2.4. The Minkowski function of a set P can be
used as polyhedral Lyapunov candidate for stability anal-
ysis of dynamical systems upon the Lyapunov stability
theorem (Blanchini, 1995).

Remark 2.5. The Definition 2.3 is stated for general poly-
hedral sets P containing the origin in their interior. The
result holds similarly for symmetric polyhedral sets con-
taining the origin in their interior if:

V (x) = ‖Fx‖∞ . (4)

�

Proposition 2.6. (Bitsoris, 1988a) The convex polyhedral
set:

P = {x ∈ R
n|Fx ≤ w} ,

with F ∈ R
r×n, w ∈ R

r, is invariant with respect to

x(k + 1) = Ax(k) (5)

if there exists a matrix H ∈ R
r×r with nonnegative

elements such that:

FA − HF = 0 (6)

(H − 1)w ≤ 0. (7)

�

3. DELAY-DIFFERENCE EQUATIONS AND
RELATED INVARIANCE DEFINITION

The classical approaches use an extended state-space rep-
resentation for the treatment of the time-delay systems
(Olaru and Niculescu, 2008; Lombardi et al., 2009a,b). In
order to avoid this complex framework, we present several
tools for alternative set invariance characterization.

Consider a delay-difference equation of the form:

x(k + 1) =

d∑

i=0

Aix(k − i), (8)

where x(k) ∈ R
n is the state vector at the time k ∈ Z+.

Ai ∈ R
n×n, for all i ∈ Z[0,d]. We assume that all the

initial conditions of system (8) satisfy x(−i) ∈ R
n, for all

i ∈ Z[0,d].

The next theorem states the stability conditions for the
dynamical system (8).

Theorem 3.1. Consider the Lyapunov-Razumikhin func-
tion V : R

n → R+ such that there exist the radially
unbounded functions φ(·), ω(·) : R+ → R+ continuous and
non-decreasing with φ(0) = ω(0) = 0 and ε ∈ R[0,1).

Denote x(k)⊤ =
[

x(k)⊤ x(k − 1)⊤ . . . x(k − d)⊤
]⊤

∈

(Rn)d+1.

Consider the function Ṽ : (Rn)d+1 → R
n with Ṽ (x(k)) ,

max
i∈Z[0,d]

{V (x(k − i))}.

If the following hold:

(i) φ(‖x‖) ≤ V (x) ≤ ω(‖x‖), ∀x ∈ R
n,

(ii) V (x(k + 1)) − εṼ (x(k)) ≤ 0, ∀k ∈ Z+, ∀x(0) ∈
(Rn)d+1

then the system (8) is globally asymptotically stable.

If ε = 1 the function V (x(k)) is called a weak Lyapunov-
Razumikhin function. Although the existence of a weak
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