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Abstract: The cultivation of algae in photo-bioreactors shows similarities to crop cultivation in 
greenhouses, especially when the reactors are driven by sun light. Advanced methodologies for dynamic 
optimization and optimal control for greenhouses are known from earlier research. The aim here is to 
extend these methodologies to microalgae cultivated in a flat plate photo-bioreactor. A one-state space 
model for the algal biomass in the reactor is presented. The growth rate vs. light curve is parameterized 
on the basis of experimental evidence. Spatial distribution of light and growth rate between the plates is 
also considered. The control variable is the dilution rate. Dynamic optimal control trajectories are 
presented for various choices of goal function and external solar irradiation trajectories over a horizon of 
3 days. It was found that the algae present in the reactor at final time represent a value for the future. 
Numerical and theoretical results suggest that the control is bang-(singular-)bang, with a strong 
dependence on the weather. The optimal biomass also depends on the available light, and achieving it to 
reach a new optimal steady cycle after a prolonged change in weather may take several days. A 
preliminary theoretical analysis suggests a control law that maximizes the effective growth rate. The 
analysis shows that like in the greenhouse case, the co-state of the algal biomass plays a pivot role in 
developing on-line controllers. 
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1. INTRODUCTION 

Algal biomass production is receiving considerable attention 
because of the potential for the production of valuable 
chemicals for food supplements as well as lipids that can be a 
source of sustainable bio-fuels. Most studies on algae focus 
on the physiology of biomass and valuable substance 
production, and on the design of suitable bio-reactors 
(Barbosa et al. 2005; Bosma 2010; Cuaresma et al. 2009; 
Janssen et al. 2003; Richmond and Cheng-Wu 2001). The 
control aspects of photo-bioreactors (PBRs) have received 
much less attention, and focussed on pH control (Berenguel 
et al. 2004) or CO2 supply (Buehner et al. 2009) . 

Over the past years, considerable efforts have been devoted 
to the development of an optimal control strategy for crop 
production in greenhouses (van Straten et al., in press, 2010) 
This consists essentially out of two hierarchical steps: (i) 
dynamic optimization, to be performed with smooth, 
assumed nominal weather, and (ii)  on-line receding horizon 
optimal control. The dynamic optimization delivers a co-state 
trajectory of the biomass, which represents the marginal 
value of an extra unit of biomass at any time. It can 
subsequently be used to derive suitable on-line control laws. 
The approach requires (i) a dynamical state space model of 

the system, (ii) the formulation of an suitable (economic) 
goal function, (iii) the forecast of the external variables 
(weather), (iv) a suitable solution method.  

This paper explores the applicability of this methodology for 
control of a flat plate PBR. We first derive a model, 
formulate a goal function, and then solve the control problem 
for two sample light patterns over 3 days. Numerical results 
as well as a preliminary analysis are presented that shed light 
on the optimal control problem of the PBR. Finally, 
similarities and difference with the greenhouse case are 
briefly discussed, suggesting directions for further 
investigations. 

2. THE PBR BIOMASS MODEL 

This paper focuses on the biomass production. At this stage, 
the generation of the final chemical valuables, which 
constitutes a more elaborate control problem, is not yet 
explored. It is assumed that supply of CO2 and nutrients are 
non-limiting, and that surplus dissolved oxygen is removed 
with a rate that is sufficient to prevent growth inhibition.  
Temperature and pH are assumed to be ideally controlled at a 
level considered optimal for the algal type studied. The 
reactor consists of vertically placed transparent sheets in 



 
 

     

 

which the biomass broth is contained, ideally mixed by air 
flow agitation. The reactor receives time varying diffusive 
and direct sunlight on both sides. A light model is used to 
derive the photon flux towards the algae as a function of 
measured direct and diffuse sunlight. Light irradiance inside 
the reactor is attenuating towards the centre according to 
Lambert-Beer 
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where ( )oI t  and ( )dI t  are the incident radiation through the 
vertical flat plates in mol[phot]s-1m-2 at time t at 0z =  and 
z d= , respectively, with d  the distance (in m) between the 
plates, and ε (t) the extinction coefficient (m-1),  given by the 
self-shading equation 
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in which oε is the extinction coefficient of the cultivation 
medium (m-1), XC is the algal biomass (g[dw]m-3), and α the 
absorption coefficient (m2g-1[dw]). The dependency of the 
growth rate is modeled according to the Steele equation 
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where sI is the irradiance at which the growth rate is 
maximal. Define the effective growth rate (d-1) at temperature 
T as 
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where x is the vertical dimension to height h  and z  the 
horizontal dimension to thickness d . Defining the 
maintenance rate (d-1) at temperature T as mTk , then the algal 
biomass dynamics is given by 
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where ( )D t is the dilution rate (m3[water]m3[rv]d-1; rv stands 
for reactor volume). Note that (4) integrates the growth rate 
over the horizontal optical path and over the height of the 
reactor. In this paper, for simplicity, the vertical light 
distribution (relevant for direct light and shading) is 
encapsulated in the calculation of a representative uniform 
irradiance at the surface. The simple one-state model (5) does 
not describe any adaptation of the parameters to prolonged 
light regimes. 

The model is parameterized on data from Bosma et al., 
(2007) for the alga Monodus subterraneus. In particular Fig. 
1 shows the behaviour of the Steele equation, viz. some data 
at the optimal temperature 23.5 oC, and the polynomial curve 
presented by Bosma. The parameter values used in all 
calculations are 0.02d = m, max 0.9Tµ = d-1, 0.1mTk = d-1, 

350sI =  mol[phot]s-1m-2, 2oε = m-1, 0.15α = m2g-1[dw]. It 
is nice to note that the saturation light value coincides with 

values derived from production experiments for ‘warm’ algae 
in Lake Balaton (van Straten and Herodek, 1982). 
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Fig. 1. Parameterization of the Steele function (solid line), 
compared to data (‘o’) and polynomial approximation. 

3. THE OPTIMAL CONTROL PROBLEM 

By defining the state Xx C= , control input u D= , external 
inputs [ , ]T

o dv I I= , and the parameters p as above, (5) can 
be written in standard state space form 

( , , , )x f x u v p=  (6) 

with f given by obvious substitutions in the right hand side 
of (5). A possible goal for the operation of the PBR is to 
maximize volumetric productivity, which leads to the goal 
function 
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 The optimal control problem is to find the optimal control 
trajectory * ( )u t  that maximizes J  subject to the control 
constraint,  

0 ( ) 2u t≤ ≤  (9) 
determined by the maximum dilution rate (set at 2 d-1 here). 
The computation of the trajectory requires the specification 
of a nominal light trajectory. Case A is a repetitive three day 
pattern, shown in the graphs below, and case B assumes that 
the irradiance on the second day is only half of standard. 

4. RESULTS 

Numerical calculations were done in Matlab with the 
tomlab/propt toolbox (Tomlab Optimization AB, Västerås, 
Sweden). All trajectories are approximated by polynomials 
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