

Refactoring of Execution Control Charts in Basic Function Blocks

of the IEC 61499 Standard

Dubinin, V.*, Vyatkin, V.**

* Computer Science Department, Penza State University,

Penza, Russia (Tel.: +7-841-236-8227; e-mail: victor_n_dubinin@yahoo.com)

** Department of Electrical and Computer Engineering, University of Auckland,

Auckland, New Zealand (e-mail: v.vyatkin@auckland.ac.nz)}

Abstract: This paper deals with refactoring of execution control charts of IEC 61499 basic function

blocks as a means to improve the engineering support potential of the standard in development of

industrial control applications. The main purpose of the refactoring is removal of arcs without event

inputs and getting rid of potential deadlock states. The ECC refactoring is implemented as a set of graph

transformation rules. A prototype has been implemented using the AGG software tool.

Keywords: refactoring, IEC 61499, graph transformation, function block, discrete control

1. INTRODUCTION

The international standard IEC 61499 defines a component-

based architecture for the new generation of distributed

component control systems [IEC 61499 (2005)]. The main

artefact for creating applications as per the standard is a

function block (FB). Many ideas of system engineering with

function blocks can be borrowed from software engineering.

Model Driven Engineering – (MDE) is one of the state-of-

the-art software engineering technology, and it operates with

models and their transformations [Sendall & Kozaczynski

(2003)]. The Object Management Group (OMG) [OMG

Web-site] has proposed the Model Driven Architecture

(MDA) for integration of various MDE tools. For definition

of models and metamodels the OMG consortium has

developed standards MOF and UML. In [Ledeczi et al.

(2001)] the approach, called Model-Integrated Computing

(MIC) for expanding MDA into the field of domain-specific

modelling languages is proposed. MIC was applied in

[Thramboulidis (2005)] in the area of mechatronic systems.

Graph transformations [Ehrig et al. (1999)] are a promising

technique of implementing model transformations, as

confirmed by its application in MDE, e.g. [Grunske et al.

(2005)]. According to us, this approach is also appropriate for

use in engineering of distributed component-based control

systems with the new international standard IEC 61499. Main

artefacts of the standard, such as composite FBs, applications

and subapplications, can be represented in an abstract graph

form. This also applies to basic FBs whose Execution Control

Chart (ECC) can be naturally represented as a graph.

Model refactoring is an important direction in the field of

model transformations. In a broad sense the refactoring

changes program structure without changing its semantics.

Refactoring is a technique supporting evolution of software

systems, which can be applied to different abstraction levels

of software models – from low-level code up to high level

models. A good introduction to refactoring using graph

transformation can be found in [Mens (2006)].

In this paper we solve the problem of ECC diagrams

refactoring in basic FBs. The main purpose is to get rid from

arcs having no event conditions and from (conditionally)

dead states. Refactoring in this case is largely based on the

notion of reachability of EC actions’ sequences. The graph

transformation rules for the ECC refactoring are presented.

The prototype refactoring system is implemented in the

graphs transformation tool AGG [Taenzer (2000)].

The paper is structured as follows. In Section 2 a formal

model of ECC syntax is introduced. Section 3 discusses ECC

execution rules. The concept of ECC refactoring is defined in

Section 4. Section 5 presents the refactoring by means of

graph transformations, and Section 6 discusses its

implementation using the AGG software tool. The paper is

concluded with a short summary and references.

2. MODEL OF EXECUTION CONTROL CHART

The Execution Control Chart (ЕСС) is a state machine

determining sequence of operations in a basic FB [IEC 61499

(2005)]. For the purposes of refactoring we use a simplified

model of ЕСС, different from [Dubinin & Vyatkin (2006)].

Let's define ЕСС as a tuple: ECC = (S, R, E, C, A, fE, fС, fA,
fP), where:

S={s1, s2,…, sn} is a set of the vertices representing EC-states;

R ⊆ S × S is a set of the arcs representing EC-transitions;

E= {e1,e2,…,em} is a set of event inputs;

C={c1,c2,…,ck} is a set of guard conditions defined over

input, internal and output variables of a basic FB;

A= {a1,a2,…,ap} is a set of EC-actions’ sequences.

The set of arcs R is divided into class-rooms: RE - event, RC -

conditional and RT - unconditional arcs, R = RE ∪ RC ∪ RT;

RE ∩ RC ∩RT=∅.

Proceedings of the 13th IFAC Symposium on
Information Control Problems in Manufacturing
Moscow, Russia, June 3-5, 2009

978-3-902661-43-2/09/$20.00 © 2009 IFAC 193 10.3182/20090603-3-RU-2001.0197

According to the standard, the syntax of EC-transition

conditions is defined as: Event input | Guard condition w/out

event inputs | Event input & Guard.

An event arc (E-arc) represents EC-transition with event

input in its condition, a conditional arc (C-arc) an EC-

transition without event input, having a guard condition with

non-constant true value, and unconditional arc (T-arc) having

no event inputs and constant true value. In the following we

shall designate Е-and T-arcs with a solid line, and C-arc with

a dashed line. When necessary, in drawings we shall put a

character “t” above T-arcs, and “e” above E-arcs.

fE: RE→E –- the function assigning event inputs to E-arcs;

fС: RE ∪RC→C– assignment o f guard conditions to Е-

,C-arcs;

fA: S→A – assignment of EC-actions’ sequences to states;

fP:R→D - the function, assigning priorities to arcs, where D

= {d1, d2, …} is a countable, linearly-ordered set of priorities

with an order relation p . For two arbitrary arcs r1,r2∈R, if

fP(r1)=di and fP(r2)=dj and di
p dj (in our case, i <j), then

priority of the arc r1 is considered to be higher than of the arc

r2. For convenience we shall use normalized priorities,

defined as follows. Let R
s
 is the set of all arcs which are

starting in the vertex s. The function of assigning normalized

priorities of arcs for the vertex s is defined as follows:

fP
s
:R

s→{1,2,…,|R
s
|}, and the general function of

prioritization (for the whole ECC) is defined as

U
Ss

s

PP ff
∈

= .

In ЕСС of IEC 61499, priorities of EC-transitions are not

defined explicitly, instead, the priority is based on the

location of the transition in the textual representation of the

function block (in XML format).

3. MODELS OF ECC EXECUTION

According to IEC 61499, an ЕСС is interpreted following the

state-machine presented in Table 1. The ECC interpreter is

activated by an input event and continues evaluation of ECC

until no EC-transition can clear. This process may include

several EC-transitions and is called a single run of FB.

As it was noted in [Sünder et al. (2006)], [Vyatkin & Dubinin

(2007)], the definition of ECC interpretation in the standard

is incomplete and thus, ambiguous. It, for example, admits

two different approaches to evaluation of EC-transitions

without events.

According to the first approach, an EC-transition without

events can be cleared only if it is not first in the run, but

follows some other EC transition with event. The second

approach does not link EC-transition to any concrete event.

In this case enableness of the EC-transition is determined

only by the value of its guard condition. We shall name an

eventless guard condition in the first case passive, and the

second case - active. Both approaches were studied in the

literature. The first approach is presented in [Sünder et al.

(2006)], the second is presented in the work [Vyatkin &

Dubinin (2007)], introducing sequential model of FB

execution. In the following we shall consider only the first

model of ЕСС realization in which there is a direct necessity

in refactoring of ЕСС.

Table 1. ECC operation state machine (Table 1 from [IEC

61499 (2005)], 5.2.2)

t2 t1

t4 t3

s0

s1

s2

State Operations

s0 ---

s1 Evaluate transitions

s2 Perform actions

Transition Condition Operations

t1 Invoke ECC Sample inputs

t2 No transition clears

t3 A transition clears

t4 Actions completed

Definition 1. Potentially-deadlock (PD) is an ECC state if all

arcs going out it are conditional.

Assertion. If ЕСС interpreter made transition t2 (Table 1)

while ЕСС was in a PD-state then this state becomes a

deadlock. No event signal can change this state.

Definition 2. Two ЕССs are called functionally equivalent

(within the limits of a certain model of ECC execution), if at

any sequences of input events and corresponding values of

input variables, both ЕССs follow the same sequences of EC-

actions.

4. REFACTORING OF ECC

Refactoring of ЕСС is used for getting rid of: 1) C-arcs; 2)

PD-states. According to these goals we will distinguish two

types of refactoring (type 1 and 2). Results of refactoring 2

are based on the results of refactoring 1. Refactoring 2 has

direct practical significance. At the same time, refactoring 1

can help the developer to have a different point of view on

developed ЕСС that in some cases (on the basis of the visual

analysis) can help to rethink and redesign it.

Let's name CT-network of ЕСС a subgraph containing arcs

only from RC ∪ RT; but not from RE. Generally the given

graph may be not connected. Accordingly, as T-network of

ЕСС we shall name a subgraph containing all arcs from RT.

Let's introduce ES = {(s,s’)∈RE | ∃(s’,s”)∈ RC ∪ RT} – the

set of the E-arcs forming a path of length 2 with one of С- or

T-arcs of a CT-network. Let us name these arcs as sources. It

is assumed, that the initial CT-network is acyclic. Presence of

cycles tells about incorrectness of the ЕСС.

The general idea of removing C-arcs from ECC is based on

the concept of reachability of sequences of EC-actions at the

ЕСС interpretation. Let (s0, s1) ∈ ES be an E-arc followed by

the path s1, s2, …, sk in the CT-network. For each EC-state si

(1,i k=) there is a sequence of associated EC-actions ai. An

example is given in Fig. 1, where the path w.l.o.g. consists of

C-arcs only.

This path can be substituted by one E-arc (s0,sk) whose guard

condition is composed from the guard conditions of the arcs

(ci, 1,i k=), constituting the path, and from the so-called

13th IFAC INCOM (INCOM'09)
Moscow, Russia, June 3-5, 2009

194

Download	English	Version:

https://daneshyari.com/en/article/719356

Download	Persian	Version:

https://daneshyari.com/article/719356

Daneshyari.com

https://daneshyari.com/en/article/719356
https://daneshyari.com/article/719356
https://daneshyari.com/

