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Abstract: We focus on some single machine scheduling problems for which a set of new jobs
have to be scheduled after a schedule of old jobs has been set. Each new and old job belongs to
a family and changing the production from one family to another requires a setup. The initial
schedule of old jobs is assumed to minimize the sum of setup times. The new jobs can be either
scheduled after the old jobs or inserted within the existing schedule, which results in a disruption
cost that has to be minimized together with the sum of setup times of the overall schedule. In this
paper we tackle several simple setup time configurations yielding different scheduling problems
for which we propose optimal polynomial time algorithms or provide NP -hardness proofs. In
the former case we consider the problem of enumerating the set of strict Pareto optima for the
sum of setup times and disruption cost criteria.
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1. INTRODUCTION AND PROBLEM
FORMULATION

Consider a short-term scheduling problem for which a set
of jobs has been scheduled for execution, but has not been
processed yet by the production resources. A new set of
jobs enters the shop and has to be scheduled, taking into
account the scheduling decisions that have already been
taken. This kind of problem is referred to as a Rescheduling
problem for new orders (Hall and Potts (2004)) and has ap-
peared in the literature only quite recently. This situation
may occur in industries for which the short-term schedule
is meant for a longer period than the actual real production
period. This is the case, for instance, in a shampoo packing
system in which a short-term schedule is calculated for
a period of 36 hours, knowing that it is daily updated.
When doing so, the scheduler has 12 hours of remaining
unproduced but scheduled jobs. New jobs, corresponding
to 24 hours of production, have to be scheduled taking
this remaining schedule into account. Therefore, the aim
of the scheduler is to schedule the new jobs such that
the objective function is minimized, together with the
disruption cost induced by inserting new jobs into the
remaining schedule.

The problem tackled in this paper can be formally stated
as follows. A single machine is available for processing jobs,
from time 0 onwards. Let J0 be the set of the n0 jobs
already scheduled, the so-called ‘old’ jobs, and JN be the
set of the nN new incoming jobs. Each job j is defined
by a processing time pj and belongs to a single family fk.

Switching processing from family k to family ℓ requires a
setup time, which we assume to depend on family ℓ only
and not on family k: this setup time is denoted by sℓ. The
objective, for both sets of jobs, is to minimize the sum of
setup times which is equivalent to minimize the makespan
of the overall schedule, referred to as Cmax.

The input of the problem consists of the sets of jobs (old
and new) and the initial schedule (sequence) α for the jobs
in J0, which is assumed to be optimal for the makespan
criterion. We are asked to find a schedule for all jobs. We
are allowed to disturb the original schedule α, but this
will incur a disruption cost, which is measured either by
a change in the scheduling positions of the old jobs, or
by a change in the completion times of the old jobs. Let
π denote a schedule for the old and new jobs. Then we
define Pj(π) as the position of job j in schedule π and
Cj(π) as its completion time in schedule π. We consider in
this paper three disruption measures:

• Dj(α, π): the absolute positional disruption. For each
job j ∈ J0 we define Dj(α, π) as the absolute differ-
ence between its position in α and its position in π.
We have Dj(α, π) = |Pj(π) − Pj(α)|.

• Pj(α, π): the positional disruption. For each job j ∈
J0 we define Pj(α, π) as the difference between its
position in α and its position in π. We have Pj(α, π) =
Pj(π) − Pj(α).

• ∆j(α, π): the absolute completion time disruption.
For each job j ∈ J0 we define ∆j(α, π) as the absolute
difference between its completion time in α and its
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completion time in π. We have ∆j(α, π) = |Cj(π) −
Cj(α)|.

Henceforth, the disruption cost Z can be measured by
Dmax = maxj∈J0

Dj ,
∑

j Dj, Pmax = maxj∈J0
Pj ,

∑
j Pj ,

∆max = maxj∈J0
∆j or

∑
j ∆j .

We focus on the calculation of strict Pareto optima for the
makespan and a disruption cost Z. A schedule s is a strict
Pareto optimum iff there does not exist another schedule
s′ such that Cmax(s′) ≤ Cmax(s) and Z(s′) ≤ Z(s) with at
least one strict inequality. We say that s is a weak Pareto
optimum if, in the above definition, the inequalities are
strict inequalities.

Table 1 presents a summary of the notations used through-
out this paper.

Table 1. The used notations

Notation Meaning

n0 The number of old jobs
J0 The set of old jobs
α The initial schedule (sequence) of old jobs

nN The number of new jobs
JN The set of new jobs
pj Processing time of job j
fk Set of jobs of family number k
sk Setup time changing the production to family k

nf
0

the number of distinct families in J0

f0

k
Family number k restricted to the old jobs

nf

N
The number of distinct families in JN

fN
k

Family number k restricted to the new jobs

|f0

k
| The number of jobs in family f0

k

|fN
k
| The number of jobs in family fN

k

nf

0∩N
The number of families in JN that are also in J0

k → ℓ/α The families that precede family fℓ in schedule α

Research on this topic is related to rescheduling problems
which have been the matter of numerous studies (see
Vieira et al. (2003) for a review). However, the approach
consider here is relatively new, and only a few papers on
this subject have appeared so far. The first one is by Unal
et al. (1997). They consider the single machine problem
with sequence dependent family setup times. The aim is
to obey deadlines for old jobs and minimize the makespan
of the new jobs. They propose a polynomial procedure
to check whether there exists a solution in which no addi-
tional setups are required, while obeying the deadlines and
the order of the old jobs in the initial schedule. They fur-
ther show that the problem of minimizing total weighted
completion time is NP -hard in general, but polynomial
when the processing times are unit.
A major contribution is due to Hall and Potts (2004), who
proposed a seminal paper in the field. They define the
disruption measures Dj and ∆j , and study several single
machine scheduling problems. In each of these problems,
the objective function contains a component that is equal
to the total completion time or the maximum completion
time, which has to be minimized in combination with or
subject to a disruption cost, which is modelled by either
Dmax,

∑
j Dj, ∆max or

∑
j ∆j . Among the tackled prob-

lems, they consider those for which the scheduling criterion
is minimized under the constraint that the disruption cost

is bounded by a threshold value ǫ. This is equivalent to
compute a weak Pareto optimum for these two criteria.
Hall and Potts proposed either polynomial time algorithms
or showed NP -hardness. It is important to notice that for
almost all of the studied problems, the initial sequence
α is assumed to be optimal for the scheduling criterion.
Nevertheless, at the end of their paper they briefly discuss
the multiple disruptions situation, which means that α is
the result of multiple job insertions and is thus no longer
optimal for the scheduling criterion. Hall et al. (2007)
consider a rescheduling problem with a single machine and
multiple disruptions. They proposed a branch-and-bound
algorithm which solves instances with up to 1000 jobs in
size.
Furthermore, Yuan and Mu (2007) study four single ma-
chine rescheduling problems with the assumption that
sequence α is optimal for the makespan criterion and that
each job has a release date. They consider the problem of
minimizing this objective subject to the constraint that
the disruption criterion is bounded by a value ǫ. The two
problems for which the disruption criterion is either ∆max

or
∑

j ∆j are shown to be NP -hard. This is not the case
of the problem with Dmax criterion which can be solved
in polynomial time.

In this paper we provide results and algorithms for various
single machine scheduling problems. We will use the clas-
sical three-field notation scheme introduced by Graham
et al. (1979), where we use the notation introduced by
T’kindt and Billaut (2006) to denote bicriteria problems.
In Section 2 we focus on the 1|sf = s|Pmax, Cmax problem.
The setup times between jobs from different families are all
equal and the objective is to find the set of Pareto optimal
points for the objectives of minimizing the makespan and
minimizing the disruption cost, which is computed as the
maximum of the relative positional disruptions. We pro-
pose a polynomial time algorithm for enumerating the set
of strict Pareto optima for these two criteria. The problem
remains polynomially solvable even in the case of the max-
imum absolute completion time disruption. This problem,
referred to as 1|sf = s|∆max, Cmax, is tackled in Section
3. We next consider in Section 4 the 1|sf |Pmax, Cmax

problem with family dependent, but not sequence depen-
dent, setup times for which we propose a polynomial time
dynamic programming algorithm for enumerating the set
of strict Pareto optima. In Section 5 we show that, for
the ∆max criterion, this enumeration cannot be achieved
in polynomial time since the 1|sf |∆max, Cmax problem is
shown to be NP -hard in the weak sense. We show, in Sec-
tion 6, that this result also holds for the 1|sf |

∑
j ∆j , Cmax

problem. Table 2 summarizes the tackled enumeration
problems and the corresponding complexity.

For conciseness purposes, all proofs of the proposed results
are omitted.

2. THE 1|SF = S|PMAX , CMAX PROBLEM

We assume in this section that the setup times are family
independent and that the disruption criterion is Pmax. The
goal is to enumerate the set of strict Pareto optima for the
Cmax and Pmax criteria. Before giving the main solution
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