
Banyan Switch Applied for LDPC Decoder
FPGA Implementation

Wojciech Su�lek ∗

∗ Silesian University of Technology, Faculty of Automatic Control,
Electronics and Computer Science, Akademicka 16, 44-100 Gliwice

(e-mail: wsulek@polsl.pl)

Abstract: Low-Density Parity-Check codes are one of the best modern error-correcting
codes due to their excellent error-correcting performance and highly parallel decoding scheme.
This article concerns the hardware iterative decoder for a subclass of LDPC codes that
are implementation oriented, known also as Architecture Aware LDPC. The parameterizable
decoder has been designed in the form of synthesizable VHDL description. Implementation
in Xilinx FPGA devices achieves throughput nearly 100Mb/s. Significant part of the decoder
area is occupied by Configurable Interconnection Network. The network consists of a set of
multiplexers that propagate the data from memory to the computation units. Behavioral
description of the interconnection network gives quite poor synthesis results: decoder area is
large and exponentially dependent on the number of inputs / outputs. Instead of straightforward
behavioral description, the switching network can be described structurally making use of
ideas known from theory of telecommunication interconnection networks: Benes or Banyan
switches. In this article I present in detail the interconnection network implementation based on
Banyan switch with additional multiplexer stage to enable non-power-of-2 numbers of outputs.
Comparison of synthesis results for the network obtained by synthesis of behavioral description
as well as the Banyan structural description shows significant decrease of decoder area in the
second case.

Keywords: Error-correcting codes, LDPC codes, Decoders, Interconnection networks, Banyan
networks

1. INTRODUCTION

Outstanding error correction performance and highly par-
allel iterative decoding algorithms have made Low-Density
Parity Check (LDPC) codes (MacKay (1999)) the most
powerful error correcting codes for reliable high speed com-
munication applications. They have been recently adopted
for variety of industrial standards, e.g. IEEE (2006), ETSI
(2009). Besides all their desirable properties, one charac-
teristic of LDPC codes, namely the randomness of parity-
check matrix structure, makes implementation of LDPC
decoders a difficult task as it leads to complex interconnect
wiring for practical codes, and hence to a large demands
for hardware resources in a decoder implementation.

The typical LDPC decoding procedure is the message pass-
ing algorithm, also known as belief propagation (BP) algo-
rithm, that implements the iterative updating of messages
(i.e. beliefs for codeword bit values) based on the parity-
check equations for the particular code. These parity-check
equations can be represented graphically by a bipartite
Tanner graph. Thus the Tanner graph indicates the mes-
sage passing scheme.

Several LDPC decoder architectures have been proposed
to solve the problem of efficient message delivery between
the computation units. A fully parallel architecture (e.g.
Blanksby and Howland (2002)) exploits the benefit of
parallel decoding schemes. However, the implementation

complexity is very high and impractical for codes of larger
blocks. On the other side, serial architectures where the
single processing unit is shared for area efficiency are
too slow for most applications. Thus partially parallel
architectures, with some limited number of processing
units, allow proper cost-performance tradeoffs, see e. g.
Zhong and Zhang (2005); Lee and Ryu (2008). It has been
recognized that the partially parallel decoder architectures
can be accomplished well for some subclass of codes, with
structured parity check matrix, known as Architecture-
Aware LDPC (Mansour and Shanbhag (2003)) or VLSI-
Oriented (Zhong and Zhang (2005)).

In Architecture-Aware LDPC (AA-LDPC) codes, the par-
ity check matrix is composed of permutation submatrices
that determine the interconnection network configuration
in the consecutive subiterations. In this paper I briefly
present partially parallel AA-LDPC decoder that has been
implemented in the form of synthesizable VHDL descrip-
tion (Su�lek (2008)). The target hardware platforms for the
decoder are FPGA devices. Then I focus on the construc-
tion of configurable interconnection network, which con-
stitutes a significant part of the required FPGA decoder
area.

Behavioral description of the interconnection network
leads to quick increase of the required number of resources
with the number of network inputs / outputs. Significantly
more effective use of resources can be achieved with struc-



tural description of the network in the form of well known
Benes networks that has been adapted by some researchers
(Tang et al. (2006), Lin et al. (2009)). However, if the
submatrices of the parity check matrix are in the form of
cyclic shifts of the identity matrix, then the switch can be
constructed with even more ares efficient Banyan switch
(e.g. Wu and Feng (1980)). In this paper I present the
details of the Banyan switch implementation for LDPC
configurable interconnection network and the synthesis
results of the implemented network for the Xilinx VirtexII
devices with comparison to the results obtained for the
behavioral description of the network.

2. LDPC CODES BASICS

Low-density parity-check codes are a sub-class of linear
block codes that are defined by a very sparse parity check
matrix HM×N , MacKay (1999). Encoding process for a
linear code denoted as C(N,N −M) adds M redundant
bits to the information vector u = {u1, u2, . . . , uN−M} to
form the code vector x = {x1, x2, . . . , xN}. In the decoder,
the vector x is recognized as a correct codeword (x ∈ C) if

and only if the parity check condition HxT = 0 is satisfied
(in GF (2) field). If the codeword has been corrupted, the
decoding algorithm tries to correct errors. The coderate
R = (N −M)/N characterizes the amount of redundancy
in the code.

LDPC codes are often defined by an alternative to parity
check matrix representation: a bipartite Tanner graph,
where one set of nodes represents data symbols (bits),
also known as bit nodes, and the other set represents
parity check constraints (check nodes). Each edge in the
Tanner graph corresponds to a ’1’ in the parity check
matrix H. Figure 1 shows the Tanner graph and the parity
check matrix for a linear code with N = 7 bit nodes
and M = 3 check nodes. Actually this graph represents
Hamming C(7, 4) code, which is not an LDPC code, but it
is unessential for Tanner graph definition.

1

1 2 3 4 5 6

2 3

Bit-nodes

Check-nodes

7

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎡ ⎤

⎢ ⎥�
⎢ ⎥

⎣ ⎦

H

Fig. 1. Tanner graph

The Tanner graph visualizes iterative message passing
algorithm used for decoding. Commonly used algorithms
are performed by exchanging messages (beliefs) between
bit nodes and check nodes through the edges in both
directions. Each node of the graph represents computation
of updated beliefs and edges indicate the way of message

passing. In the case of LLR-BP algorithm (Log-Likelihood
Ratio Belief Propagation) messages are log-likelihood ratio
of beliefs, then operations are sums (bit nodes) and sums of
some nonlinear functions of messages (check nodes). Inputs
to the algorithm are measures of reliability of the received
data based on channel observations (received channel soft
values), which are in the form of log-likelihood ratios of
probabilities. They are called intrinsic channel reliability
values, denoted as δn for nth bit of the codeword:

δn = log

[
P (xn = 0|yn)

P (xn = 1|yn)

]
(1)

where xn is the transmitted bit and yn is the received
“soft” value. Details of the iterative message passing
decoding algorithms will be omitted here, because they
are available in reach literature, e.g. MacKay (1999); Lin
and Costello (2004); Zhao et al. (2005).

Hardware decoder that will be briefly presented in the
next section is based on TDMP (Turbo-Decoding Message-
Passing) version of decoding scheme, see Mansour (2006).
TDMP algorithm uses a modified message passing scheme,
where C is considered as the concatenation of some number
of supercodes, which means the set of rows of H is
virtually partitioned into a number of subsets. Each subset
constitutes a supercode. A word is a correct codeword if
it belongs to all constituent supercodes. In the TDMP
algorithm implementation, only one kind of computation
units is needed that is called SISO unit (Soft-Input Soft-
Output).

2.1 Architecture-Aware LDPC Codes

As is well known (e.g. Mansour and Shanbhag (2003);
Zhong and Zhang (2005)), efficient partially-parallel de-
coder implementation is possible for parity-check matrices
with certain constraints on their form. The main build-
ing blocks of partially-parallel decoder are message mem-
ory and some number of computation units. In order to
suitably organize message memory access and eliminate
conflicts, the code graph has to posses some specific prop-
erties. The set of bit nodes of the graph is partitioned
into L subsets of P nodes and similarly the set of check
nodes is partitioned into D subsets of P nodes. Here P is
the number of computation units used for implementation.
Edges in the graph should be organized such that one of
the following conditions is satisfied for every combination
of bit node subset and check node subset:

• each bit node from the subset is adjacent to exactly
one check node in a check node subset,

• each bit node in the subset is not adjacent to any
check node in a subset.

Then single memory word may consist of P messages
that are delivered to P computing modules in a single
clock period by configurable interleaver that shuffles the
fragments of the memory word according to the local graph
structure of the code.

With such code-graph organization, a parity check matrix
is similar to the one shown in equation (2):



Download English Version:

https://daneshyari.com/en/article/719504

Download Persian Version:

https://daneshyari.com/article/719504

Daneshyari.com

https://daneshyari.com/en/article/719504
https://daneshyari.com/article/719504
https://daneshyari.com

