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∗Department of Physics and Measurement, Faculty of Chemical
Engineering, Institute of Chemical Technology in Prague, Czech

Republic (e-mail: scholtzv@vscht.cz).
∗∗Department of Mathematics, Faculty of Electrical Engineering,
Czech Technical University in Prague, Czech Republic (e-mail:

scholtzo@math.feld.cvut.cz)

Abstract: This paper describes a keystream generator of the stream ciphers based on inverse
permutation and discuss its cryptographic criteria. The good cryptographic criteria as linear and
spherical complexity are satisfied. These criteria are in this case of binary generator equivalent
with other criteria. Consequently it was shown, that the generated binary sequence has good
pseudorandom quality.

Keywords: Stream ciphers, keystream generator, cryptographic criteria, inverse permutation,
empirical tests.

1. INTRODUCTION

Stream ciphers are suitable for the time-critical applica-
tions or processing-constrained devices to meet require-
ments of performance extremes. Some of its application is
the audio/video encryption in communications, e.g. VoIP
(Voice over IP), digital video broadcasting system like pay-
TV or wireless communication protocols (WEP, WPA,
SSL) and others, see Lu (2006). Good review and the state
of the art can be find in Biryukov (2004).

In this work, the stream ciphers are introduced and the
basic principles and requirements for its construction are
described. Consequently, generator of keystream based on
the inverse permutation is constructed and its crypto-
graphic criteria are discussed.

2. MATHEMATICAL BACKGROUND

The private key ciphering systems can be generally clas-
sified into two main parts: block and stream ciphers. The
principal distinction between block and stream ciphers is
in memory, Cusick et al. (1998). The block cipher divides
the message into blocks and enciphers each block by a
key. Otherwise, the stream cipher specifies a device with
internal memory that enciphers each digit of the message
stream to other digit which depends on both the secret
key and the internal state of the stream cipher at time.
The sequence which controls the enciphering is called the
key stream and the automaton to produce this key stream
is called keystream generator. For more information or
detailed study see the monography Cusick et al. (1998).

2.1 Additive synchronous stream ciphers

The keystream in synchronous stream ciphers systems
are independent of the message stream. The keystream
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Fig. 1. Additive synchronous stream cipher.

is deterministic so that the stream can be reproduced for
the decipherment. One type of the synchronous stream
ciphers are the additive synchronous stream ciphers. The
characters of the keystream comes from an Abelian group
(G, +) ZN . The ciphertext ci is calculated by the addition
operation ”+” of the keystream character zi and the
message stream character mi. On the receiver side, the
original message stream is reconstructed by the inverse
operation ”−” of the ciphertext stream character ci and
the some keystream character zi as on the sender side. This
process is schematically depicted in fig. 1 and the adequate
equation of the ciphering and deciphering are following:

ci = mi + zi,
mi = ci − zi.

(1)

2.2 Cryptographic aspects of sequences

The keystream sequences are required to have some prop-
erties to make it impossible (computational difficult) to
find the key generator and decipher the ciphered message.
Due to results published in works of Cusick et al. (1998)
and Birkhoff et al. (1981), there are some common crypto-
graphic measures of their strength such as the linear com-
plexity, sphere complexity, nonlinearity and randomness.

Linear complexity. Linear homogeneous recurrence rela-
tions code of order m over ZN is an equation of the form



c0si + c1si−1 + . . . + cmsi−m = 0,
i ≥ m; cm 6= 0. (2)

This sequence produces an infinity sequence s∞ =
(s0, s1, ...) for each initial block of a = (s0, s1, ..., sm−1). If
some block of 2m+1 characters of this sequence is known,
it is possible to calculate all the coefficients c0, . . . , cm

and reconstruct the whole sequence s∞. From the cryp-
tographic point of view, it is desirable that the sequence
s∞ should be generated by an utmost order.

The polynomial p(x) = c0 + c1x + · · ·+ ck−1x
k−1 is called

the characteristic polynomial of the sequence s∞.

The polynomial m(x) is called a minimal characteristic
polynomial of the sequence s∞ if for any other charac-
teristic polynomial p(x) is satisfied

deg(m(x)) ≤ deg(p(x)), (3)

where deg is an order of the polynomial.

The linear complexity L(s∞) is defined as the order of
minimal polynomial of the sequence s∞, such that

L(s∞) = deg(m(x)). (4)

In other words, the linear complexity represents a length
of the minimal continuous sequence part necessary to
calculate the whole sequence.

Sphere complexity. On principle, the potentional dis-
turber does not need to find the key stream exactly. In
the major part of situations some key stream sequence
approximation may be sufficient.

The sphere complexity SCu(s) of sequence s represents
the minimum of linear complexities of all sequences with
the Hamming distance not greater that u:

SCu(s) = min{L(s + y), WH(y) ≤ u}, (5)

where L is the linear complexity and WH(y) is the
Hamming weight of vector y.

Recall that the Hamming weight of vector y is the number
of components of y that are different from zero and
the Hamming distance of two sequences is the Hamming
weight of their difference.

The secret keystream sequence must satisfy not only the
good linear complexity but the sphere complexity also.

Nonlinearity. Let g(x) be a function g : (G, +) →
(H,+). The local nonlinearity of the function g(x) for
a 6= 0 is measured by

Pg(a) = max
b∈H

Pr(f(x + a)− f(x) = b) (6)

and the global nonlinearity by

Pg = max
06=a∈G

max
b∈H

Pr(f(x + a)− f(x) = b), (7)

where Pr(A) denotes the probability that event A occurs.

In other words, the nonlinearity represents the probability,
that in the sequence occurs some linear part.

2.3 Empirical tests

Empirical tests are methods of statistical testing of some
selected quality of sequences. The idea is to predicate
some property of pseudorandom sequence (s0, s1, . . .) and
construct a test to divide the characters into several
categories A = {a1, a2, . . . , ak}. From the predicated
attributes the theoretical probability of the categories are
calculated and compared with the measured ones. For the
comparison, the statistical χ2 test with k − 1 degrees of
freedom may be used.

χ2 test Let have a test with k categories. Each digit
of the sequence may be assign into one of the categories.
Value v = k − 1 is the degree of freedom of the test.
Let (Y1, Y2, . . . , Yk) be the theoretical probabilities of each
category, and (P1, P2, . . . , Pk) the measured probabilities.
The number

V =
k∑

i=1

(Yi − P1)2

Pi
(8)

represents a statistical value. This value V is matched
to some probability P , which represents a probability
that the each digit of the pseudorandom sequence acquire
statistical value due to the theoretical predication. Some
values of this χ2 test are shown in table 1, for more details
see the book Knuth (1969). Due to the same book, good
pseudorandom generators should have this probability

P ∈
〈
10%, 90%

〉
. (9)

Table 1. Some values of the statistical number
V for adequate probability P in χ2 test with

v degrees of freedom.

P = 96% P = 75% P = 50% P = 25% P = 5%

v = 1 0.00393 0.1015 0.4549 1.323 3.841

v = 2 0.1026 0.5753 1.386 2.773 5.991

v = 3 0.3518 1.213 2.366 4.108 7.815

v = 4 0.7107 1.923 3.357 5.385 9.488

v = 5 1.1455 2.675 4.351 6.626 11.07

3. BINARY SEQUENCES

The digits of binary sequences are of the Z2. In this section,
some properties of binary sequences are introduced.

The period of the sequence s∞ = (s0, s1, . . .) is minimal
P , for which si+p = si, i ∈ N .

If p and 2p + 1 are primes, then p is Sophie Germain
prime.

The primitive element (or generator) of the group is
such an element which powers generates all the elements
of this group.

Following rules are postulated e.g. in the book of Cusick
et al. (1998):
Theorem 1. Let r be an odd prime, N = rk for k ≥ 1
and the q be primitive element from ZN , then for each
nonconstant sequence s∞ with the period N over Zq,
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