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A B S T R A C T

Most of the existing system reliability analysis methods have focused on series and parallel systems whose
components are weakly nonlinear and dependent. This paper proposes a new system reliability analysis method,
named multivariate system reliability analysis (MSRA), for complex engineered systems with highly nonlinear
and dependent components that are connected in series, parallel, and mixed configurations. The proposed
method first employs multivariate Gaussian process (MGP) to sequentially construct a single surrogate jointly
over the performance functions of all components and then performs Monte Carlo simulation on the surrogate
model for system reliability analysis. The joint surrogate is updated adaptively using a novel acquisition function
named multivariate probability of improvement (MPI). MGP considers the correlations between the component
performance functions and provides a joint Gaussian prediction of these functions. This joint Gaussian surrogate
model allows the use of MPI to achieve a dynamic trade-off between exploring the regions in the input space
with high prediction uncertainty and exploring those that are close to the system limit-state function. The results
of three abstract and two practical case studies show that MSRA is capable of achieving better accuracy in
estimating the system reliability than the existing surrogate-based methods.

1. Introduction

In engineering system design, a desired feature of the designed
system is that it can maintain a high reliability level. Given various
sources of uncertainty, reliability is usually expressed as a percentage,
which measures the probability that an engineered system or its com-
ponents will function properly under stated conditions. The importance
of reliability has been well conceived by engineers and researchers in
the past few decades. Considerable advances have been made in the
fields of reliability analysis [1, 2] and reliability-based design optimi-
zation (RBDO) [3, 4].

Despite the considerable advances in reliability analysis, scaling a
reliability analysis methodology from the component to system level
has been difficult. A complex engineered system can have multiple
failure modes that are often attributed to multiple physical or cyber
components. Each of these failure (or safety) modes can be modeled as
a component safety event (or simply component). Reliability analysis of
the engineered system simultaneously considering these component
safety events is termed system reliability analysis [5]. This is in contrast
to component reliability analysis where only a single component safety
event is considered. Due to the great importance of system reliability

analysis in analyzing and improving the reliability of a complex system,
its technical development has drawn considerable attention from re-
searchers in various engineering fields, such as reliability engineering,
engineering design, civil and structural engineering, and cyber-physical
systems. The search for efficient and accurate ways for system relia-
bility analysis has resulted in the development of a variety of methods
that can be generally categorized as (i) bound-based approaches, (ii)
analytical approaches, and (iii) surrogate-based approaches.

Bound-based approaches estimate the system reliability level by
providing the lower and upper bounds. The first-order bound (FOB)
method [6] estimates the lower and upper bounds of the system relia-
bility by assuming all the component safety events as mutually in-
dependent or completely dependent. This method is simple to use but
often generates too wide range of system reliability. To improve the
precision of the system reliability estimate, Ditlevsen [7] proposed the
so-called second-order bound (SOB) method that considers the inter-
actions between any two component safety events. The SOB method
generally gives much tighter bounds compared with the FOB method.
However, both FOB and SOB have limited utility due to the ignorance
of the higher-order interactions among component safety events and
the lack of smoothness in the bounds from resulting from the
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minimization/ maximization terms involved in the bound formulae. To
address these limitations, Song and Der Kiureghian [8] formulated
system reliability as a Linear Programming (LP) problem, referred to as
the LP bounds method. The LP bounds method is able to calculate op-
timal bounds for system reliability based on the probabilities of mu-
tually exclusive and collectively exhaustive events. However, the per-
formance of the LP bounds method is extremely sensitive to the
accuracy of the probability approximation for the mutually exclusive
and collectively exhaustive events. More studies on the bound-based
methods for system reliability analysis can be found in Refs. [9,10].
Despite the development of the mentioned bound-based methods,
bounds are usually not convenient in practice, since they often provide
a wide range of system reliability estimate.

Analytical approaches try to derive an explicit formula of system
reliability based on the component safety events. Upon the derivation of
the explicit formula, commonly used component reliability analysis
methods, such as most probable point (MPP) based method [11] and
dimension reduction method (DRM) [12], can be conveniently utilized
for system reliability assessment. Youn et al. [13] proposed the com-
plementary intersection method (CIM), which provides an explicit
formula for system reliability analysis by defining the complementary
intersection (CI) event. With the definition of CI event, the CI-matrix
was introduced and utilized to solve the reliability of a series system
with any component reliability analysis method. However, the CIM is
not directly applicable to parallel and mixed systems. To address this
problem, Wang et al. [14] proposed a generalized CIM (GCIM) frame-
work that enables the application of the CIM to analyze the reliability of
an engineered system with any configuration. The system structure
matrix is proposed to characterize any system configuration in a com-
prehensive manner. The binary decision diagram technique is employed
to identify a system's mutually exclusive path sets, of which each path
set is a series system. Consequentially, system reliability with any
system configuration is decomposed into the probabilities of the mu-
tually exclusive path sets, which can be evaluated using any component
reliability analysis methods. Although the CIM/GCIM provides an ex-
plicit formula for system reliability analysis, accurate estimation of high
order CI-events remains a persistent challenge.

Another popular way to perform system reliability analysis is to use
surrogate-based approaches. These approaches integrate surrogate
modeling techniques with Monte Carlo simulation (MCS). Many sur-
rogate modeling techniques have been applied to component reliability
analysis and these techniques include dimension reduction methods
(DRM) [12], stochastic spectral methods [15], stochastic collocation
methods [16], and Kriging-based methods [17, 18]. Kriging-based
methods build the surrogate model over a performance function fol-
lowing a sequential process, in which an initial surrogate model is first
constructed with an initial set of observations (e.g., at a set of sample
points generated by the Latin hypercube sampling (LHS) technique),
and then continuously refined by identifying and adding new sample
points (often one new point at each iteration) [19, 20]. The ability to
adaptively identify the important regions in the input space and locally

refine the surrogate model in these regions is a key advantage of these
methods when applied to system reliability analysis. After the surrogate
model is built, MCS is most often performed as a post-processing step to
assess the component reliability. Several researchers have applied Kri-
ging-based surrogate modeling to system reliability analysis. Based on
the efficient global reliability analysis (EGRA) method [5], Bichon et al.
[21] proposed the use of a composite Gaussian process model for
system reliability analysis. Their work adopted the so-called composite
expected feasibility function as the acquisition function to find the new
samples located in the component limit-state regions that contribute the
most to the system failure. However, this sampling procedure spans the
whole input space and efforts may be wasted in regions carrying low
probability content. Similarly, Wang and Wang [19] introduced the so-
called integrated performance measure approach (iPMA) for system
reliability, in which an integrated performance measure function is
derived to envelop all component safety events. iPMA adopts a com-
prehensive system-level sampling rule to handle multiple failure modes
concurrently for efficient system reliability assessment. However, the
sampling strategy of iPMA is only based on the prediction error of the
Kriging model for each component without considering the importance
regions to choose the sample points. To identify important regions as
well as recognize unimportant component(s) during sequential sam-
pling, Fauriat and Gayton [20] developed the Active learning and Kri-
ging-based SYStem reliability (AK-SYS) method via the combined use of
Active learning and Kriging-based MCS. However, the efficiency of AK-
SYS may decrease in cases where large differences in magnitude exist
among the component responses, because in such cases, AK-SYS may
fail to efficiently track the important regions close to the system limit-
state. Recently, Yang et al. [22] introduced the concepts of adaptive
truncating region (ATR) and truncated candidate region (TCR) and
applied the concepts to active learning Kriging (ALK) model for system
reliability analysis, which is abbreviated as ALK-TCR. ALK-TCR greatly
decreases the probability of adding training points in the unimportant
regions and unimportant component(s) by identifying the TCR. How-
ever, TCR mainly focuses on the system failure region, which may also
include regions far away from the system limit-state. Furthermore, all
the aforementioned methods are only applicable to series and parallel
systems and cannot be directly applied to estimate the reliability of
mixed systems. More recently, Hu et al. [23] introduced an efficient
Kriging surrogate modeling approach for system reliability analysis.
Their approach constructs composite Kriging surrogates through se-
lection of singular value decomposition (SVD)-based and individually
constructed Kriging models, with an aim to combine the advantages of
both types of Kriging model. This approach can deal with any type of
system and the SVD-based Kriging models are capable of capturing the
correlations between multiple component responses. However, in-
dividual Kriging models still need to be constructed, which may result
in the lack of consideration of the dependence between components.

Most of the aforementioned Kriging-based system reliability ana-
lysis methods build separate and independent Kriging models for
component performance functions. However, if the multiple component

Nomenclature

CE: convergence estimator
MGP: multivariate Gaussian process
MPI: multivariate probability of improvement
SLSF: system limit-state function
nc: number of components
Gc: component performance function
x: vector of random input variables
Ωx

CS: component safety region in the x space
Ωx

SS: system safety region in the x space
ΩG

CS: component safety region in the G space

ΩG
SS: system safety region in the G space

ΩG
SLSF: probable region of the system LSF in the G space

� : data set used to build MGP
�n : number of known sample points in �

fx(x): joint probability density function of x
nMCS: number of Monte Carlo simulation (MCS) random samples
Y: stack vector in MGP to collect all the known inputs and

outputs
ΣY: covariance matrix in MGP
θc: hyper-parameters in MGP with respect to the cth perfor-

mance function
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