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A B S T R A C T

Estimating the tails of probability distributions plays a key role in complex engineering systems where the goal is
characterization of low probability, high consequence events. When data are collected using physical experi-
mentation, statistical distributional assumptions are often used to extrapolate tail behavior to assess reliability,
introducing risk due to extrapolation from an unvalidated (statistical) model. Existing tools to evaluate statistical
model fit, such as probability plots and goodness of fit tests, fail to communicate the risk associated with this
extrapolation. In this work, we develop a new statistical model validation metric and relate this metric to en-
gineering-driven model validation metrics. The metric measures how consistent the parametric tail estimates are
with a more flexible model that makes weaker assumptions about the distribution tails. An extreme-value based
generalized Pareto distribution is used for the more flexible model. Models are updated using a Bayesian in-
ference procedure that defaults to reasonably conservative inferences when data are sparse. Properties of the
estimation procedure are evaluated in statistical simulation, and the effectiveness of the proposed metrics re-
lative to the standard-of-practice statistical metrics is illustrated using a pedagogical example related to a real,
but proprietary, engineering example.

1. Introduction

In complex engineering systems, it is often of interest to characterize
the likelihood of high consequence but rare events. Examples include
probabilistic risk assessment (PRA) applied to nuclear power plants and
quantification of margins and uncertainties (QMU) applied to nuclear
weapons [1]. Both PRA and QMU involve decomposition of the system
reliability into events (using, for example, fault trees or reliability block
diagrams) and rolling up event-level likelihoods to the system-level. In
such analyses, high system reliability at the top (system) level is
achieved by specifying even higher reliability for sub-system level
events. To characterize performance at the sub-system (e.g., event or
component) level in PRA and QMU, continuous performance measures
related to sub-system functionality are often modeled using probability
distributions. However, with high reliability requirements, character-
izing sub-system reliability requires accurately estimating tails of
probability distributions [2,3]. Hence, characterizing the tails of prob-
ability distributions plays a key role in low probability, high con-
sequence fields like PRA [4–6] and QMU [2].

Probability distributions for continuous measures of sub-system
functionality are often estimated by collecting data from experiments.
That is, given a set of experimental data, the user selects a model

(probability distribution) for the data; then, the parameters of the
probability distribution are estimated from the data using statistical
methods. Reliability is estimated from the tails of the fitted probability
distributions. However, with high reliability requirements, the experi-
mental sample size is often too small to accurately characterize dis-
tribution tails without strong modeling assumptions. Consequently,
parametric distributional assumptions (e.g., normality) are often used
to extrapolate the extreme tail behavior of the underlying probability
distribution. The risk associated with extrapolating distribution tail
behavior is known to be large [2,4,7–11], because tail estimates are
extremely sensitive to the selected statistical model. Tail fitting
methods such as statistical extreme value theory, which use a subset of
the data most informative of the distribution’s tail behavior, are an
approach to providing estimates of low probability events [12,13],
while avoiding assumptions about the shape of the high probability
regions of the distribution. In sparse data situations, alternative
methods to traditional statistical analysis can inform reliability. For
instance, evidence theory is commonly applied to incorporate epistemic
uncertainty with limited information [14–16]. Utilizing auxiliary in-
formation such as historical data and expert elicitation in sparse data
situations can also improve reliability assessments [17]. However, in
practical applications, the analyst must decide when enough
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information exists to use statistical approaches instead of these more
expert-driven methods.

The epistemic uncertainty associated with probability distribution
selection is a known issue in many engineering applications, including
PRA and QMU [1,4], as well as lifetime and accelerated testing [18,19],
input distribution specification for computational simulation modeling
(e.g. [20,21]) and statistical quality control (e.g. [22]). However, ex-
isting statistical model fit tools, specifically goodness of fit tests and
probability plots, are inadequate for assessing and communicating the
validity of model assumptions. Interpretation of probability plots can be
subjective [23]; is sensitive to outliers [24]; and, most importantly for
tail characterization, highlights the center of the distribution rather
than the tails [11]. Distributional goodness of fit tests are even more
problematic; goodness of fit tests can detect evidence of lack of model
fit, but do not provide evidence that a model is a good fit for the data,
even though the end-user is typically aiming to prove the latter [24,25].
Accepting a parametric model just because the model cannot be dis-
proved using data reflects a logical fallacy [26] and “can lead to dis-
astrous results” when making inferences about tail behavior [8].
However, we are unaware of other commonly-used alternatives to
goodness of fit tests and probability plots for assessing statistical model
adequacy.

The goal of this article is to propose validation metrics for com-
municating model form risk when considering whether to estimate
distribution tails from statistical models to characterize rare event
probabilities. To improve upon statistical goodness of fit tests for as-
sessing model fit, we develop metrics that are directly tied to validation
of physics-based computational simulations [27–29]. While the precise
definition of model validation is debatable, we will define validation as,
“the process of determining the degree to which a model is an accurate
representation of the real world from the perspective of the intended
uses of the model” [29] (this goal is often never exactly achievable in
practice, and validation consists of analyses to assess validity, albeit
imperfectly). In short, validation examines whether a model’s predic-
tion accuracy is good enough for the intended application. As in com-
putational simulation, statistical model validation should show model
accuracy for the intended application, e.g., for tail characterization,
provide evidence that the model accurately captures the tail behavior.
Statistical extreme value theory is concerned with making inferences
about extreme observations [30] and thus provides a suite of tools re-
levant for reliability analysis. Instead of strictly using statistical extreme
value methods to make tail extrapolations, we use it to construct vali-
dation metrics to communicate risk associated with tail characteriza-
tion. To complement the validation metrics, we provide a graphical aid
that highlights model fit in the tails, such that the proposed tools par-
allel probability plots and goodness of fit tests. Our approach addresses
the limitations of the existing methods by directly explicating the risk
being absorbed in model-based extrapolation. These new metrics can
help distinguish between inferences that are data-driven, i.e., driven by
the observed data values, versus model-driven, i.e., driven by the se-
lected statistical model for the data.

This article is structured as follows. In Section 2, we provide an
example problem from QMU for nuclear weapons reliability, high-
lighting where existing statistical tools can break down for tail esti-
mation. In Section 3, we propose a novel approach for evaluating
whether the distributional assumptions underlying the methods are
adequate for the intended use, rooting our methods in engineering-
driven model validation concepts. Lastly, in Section 4, we illustrate the
proposed methods on the QMU example.

2. Motivating example: parametric tolerance intervals for QMU

To define the tail characterization problem, we consider estimation
of an extreme percentile of a distribution; in practice, this percentile
may correspond to a reliability or safety requirement. To characterize
confidence (or, conversely, sampling uncertainty) in percentile

estimates, we use statistical tolerance intervals [31]. Statistical toler-
ance intervals are an appropriate tool for this application, because they
map continuous performance measures back to the question of interest,
namely how confident are we that the reliability is at least r?

Without loss of generality, we consider percentile estimation for the
upper-tail of a probability distribution. Further, we assume all perfor-
mance measures are independent and identically distributed (i.i.d.), a
common (but often violated) assumption in practice (see the Discussion
for more information). Let = …X X X X{ , , , }n1 2 denote an i.i.d. random
sample from a population. Given a set of data X, we can estimate the
distribution of X, denoted ,�� and then calculate percentiles from this
distribution. A percentile of a distribution Qr is defined as the value of
the distribution for which r percent of observations are below this
value. Mathematically, Qr is defined as < =P X Q r( )r .

In practice, the distribution �� and percentiles Qr are estimated
from finite samples and contain sampling uncertainty. We denote es-
timates of �� and Qr as X� and Qr . Statistical tolerance intervals can be
used to quantify sampling uncertainty in a percentile Qr . Tolerance
intervals can be one- or two-sided; we consider only one-sided tolerance
intervals in this paper, often referred to as tolerance bounds, because, in
practice, we are typically trying to find a bound on a performance
measure. Mathematically, an upper one-sided −r α( , 1 ) tolerance
bound Qr α, is defined as:

≤ ≤ = −XP P X Q r α{ ( ) } 1 ,X r αX , (1)

where r is a percentile, α is the confidence in the estimate of the per-
centile. Heuristically, a one-sided upper statistical tolerance bound is
simply an upper confidence bound on a percentile.

Extrapolation based on a parametric statistical model is commonly
used to estimate percentiles and tolerance intervals, i.e. ∼X ,�� where
�� is an assumed probability model for X. In engineering applications,
common choices for �� are the normal, Weibull, and lognormal dis-
tributions [4,31]. Parameters of the distributions are estimated using
statistical methods, such as maximum likelihood estimation or method
of moments. After fitting the model, percentiles are estimated based on
quantiles of the fitted model X� .

2.1. Launch safety device application

We consider an example motivated by quantification of margin and
uncertainty (QMU), a framework for evaluating system-level nuclear
weapon performance (e.g., reliability and safety) by rolling-up com-
ponent level margin estimates [1,32]. In QMU, a quantitative measure
of system performance is compared to a performance requirement. For
instance, given a reliability requirement r, the estimated rth percentile
of the performance distribution (Qr ) must be sufficiently far from the
requirement τ, accounting for uncertainty (Fig. 1). Following [32],
margin can be defined as the distance between the percentile estimate
Qr and requirement τ; (sampling) uncertainty in the percentile estimate
is measured through a tolerance interval Qr α, . We assume the require-
ment τ is fixed and known. As the demand for QMU using experimental
data increases, a common question is when enough data exists to re-
liably estimate a percentile Qr and a tolerance interval Qr α, . More pre-
cisely, when can we feel confident that a statistical model �� is valid for
estimating a percentile and tolerance interval?

As an example, we consider a hypothetical launch safety device on a
missile. The launch safety device is an electromechanical switch that
operates upon sensing a specific environmental input. The device closes
electrical contacts upon receiving the correct input. Hence, the device
acts as a safety mechanism by failing to close unless the correct input is
received; however, the switch must close reliably within a certain time
window for the downstream devices to operate appropriately and
achieve system success. Hence, the reliability of this device directly
informs the overall system reliability. Suppose the component has a
requirement to close within 23.5 s of launch with 99.5% reliability; that
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