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Abstract: Efficient arithmetic units are crucial for cryptog raphic hardware design. The cryptographic 
systems are based on mathematical theories thus the y strongly depend on the performance of the 
arithmetic units comprising them. If the arithmetic  operator does not take a considerable amount of 
resources or is time non efficient it negatively im pacts the performance of the whole cryptosystem. Th is 
work is intended to analyse the hardware possibilit ies of the algorithms performing multiplication in 
finite field extensions GF(2m). Such multipliers are used in Elliptic Curve Crypt ography (ECC) 
applications. There are only two operations defined  in the field: addition and multiplication. Additio n is 
considered as a trivial operation – it is a simple bitwise XOR. On the other hand multiplication in the field 
is a very complex operation. To conform to the requ irements of ECC systems it should be fast, area 
efficient and what is the most important perform mu ltiplication of large numbers (100 - 600 bits). The  
paper presents analysis of GF(2m) two-step modular multiplication algorithms. It con siders classical 
(standard, school-book) multiplication, matrix-vect or approach algorithm and Karatsuba-Ofman 
algorithm, exploring thoroughly their advantages an d disadvantages.  
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1. INTRODUCTION 

Cryptographic systems are getting more and more imp ortant 
and demanding nowadays. Various mathematical theori es are 
exploited to make the cryptographic applications an d devices 
suitable for data protection in today’s computer sy stems, 
which are now spanning almost all domains of our li ves, 
facilitating most of them. Not always consciously w e are 
using many cryptographic protocols to secure or jus t to 
provide integrity of our digital data. Thus in orde r to conform 
to the continuously changing speed and security dem ands of 
computer system, the hardware designers have to pro vide 
efficient cryptosystem devices. To create such cryp tosystems 
the designer needs to employ efficient arithmetic u nits.  

Recently the cryptography based on elliptic curves defined 
over finite fields gained much popularity, especial ly due to 
the fact that in public key cryptosystems it allows  to use 
smaller keys than RSA algorithms (algorithms based on 
classical mathematical theories) to provide the sam e or even 
higher security level. The longer are the keys the more 
difficult to handle them. It is not only harder to create units 
performing mathematical operation on long keys but also to 
store and transfer them.  

The most popular finite fields (Lidl et al. (1994))  used for 
computations in Elliptic Curve Cryptography (ECC) a re 
GF(p), where p is a prime, and GF(2m), so called binary 
fields extensions. This work concerns arithmetic in  GF(2m) 
field. The intention of the authors is to help the hardware 

designers to choose the right algorithm for efficie nt 
implementation of GF(2m) operations. 

There are two main operations defined in the field:  addition 
and multiplication. The addition operation is said to be trivial 
because in binary field it can be substituted with bitwise XOR 
operation. The case is different for multiplication  in the field. 
It is considered as a complex operation. There exis t also 
division operation in the field, which is even more  complex 
than multiplication, but it is usually substituted by a set of 
multiplications and additions. The field requires 
multiplication modulo irreducible polynomial f (x) generating 
the field (Roman (2006)). The input operands are fi rst 
multiplied and then the result of the multiplicatio n needs to 
be reduced by an irreducible polynomial.  

The article briefly presents some binary finite fie ld theory 
elements necessary to understand the construction o f the 
derived algorithms. Then it analyses a group of the  
multiplication algorithms investigating their advan tages and 
disadvantages regarding cryptographic hardware desi gn. The 
analysis targets FPGA devices as an implementation 
platform. In the last section the results of implem entations are 
summarised and some conclusions are drawn.  

2. BINARY FINITE FIELD EXTENSIONS ARITHMETICS  

2.1  Binary finite field extensions arithmetic 

A field comprises a set F and two operations: addition and 
multiplication. If set F is finite then the field is also finite. 



 
 

     

 

The finite fields are also called Galois fields and  denoted as 

)( mpqGF =  or mpq
F

=
, p is the so-called characteristic of the 

field. The two most studied cases in cryptography a re prime 
fields GF(p) (p is a prime number) and binary fields GF(2m) 
(where p = 2) (Hankerson et al. (2004)). To construct the 
binary finite field extension )2( mGFF =  we use an 
irreducible polynomial f(x) of degree m: 
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where  )2(GFf i Î . The field can be viewed as a vector 

space which elements are represented with a use of a specific 

basis – here polynomial basis: },,,,,1{ 122 -- mm xxxx K . 
Thus each element in the field can be represented a s follows:  

∑
-

=

-
-

-
- +++++==

1

0

1
1

2
2

2
210

m

i

m
m

m
m

i
i xaxaxaxaaxaA K , 

where )2(GFai Î .  

The three most commonly used bases for cryptographi c 
purposes are standard (polynomial) basis, normal basis and 
dual basis. Each basis has its advantages and disadvant ages 
and it is hard to say which one is the most suitabl e for the 
best operator solution. The polynomial basis yields  the most 
regular structures and is the most popular, normal basis 
requires only a trivial shift operation to perform squaring and 
dual basis seems to be perfect for error-correcting  codes. In 
many solutions authors tend to combine bases in ord er to 
exploit their advantages to create the most optimal  designs.  

In this work the authors consider only polynomial 
representation of the field elements.   

Addition of two polynomials is carried out under mo dulo 2 
arithmetic; thus it may be said that it is performe d as the 
bitwise exclusive OR. This operation is regarded as a very 
simple one due to the fact that we do not need to b other for 
example about carry propagation. However if we XOR large 
numbers the operation, although simple, takes a lot  of 
hardware resources.  

Multiplication in a field is a more complex. Most p roblems 
creates the fact that it is a “modular” multiplicat ion - the 
result of multiplication of two field elements is a nother 
element of the field. Multiplication is defined as polynomial 
product of two operands performed modulo irreducibl e 
generating polynomial f(x) . Let )2(, mGFBA Î , be the (m-1) 
degree polynomials where  
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be an irreducible polynomial generating the field. Then 
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also an element of the field.  
There exist many algorithms for performing multipli cation in 
the binary finite field extensions (Erdem et al. (2 006)). 
Generally they can be divided into two types: two-s tep 
algorithms and interleaved multiplication algorithm s. Two-
step algorithms perform modular multiplication in t wo steps, 
first the multiplication is done and then the resul t is reduced. 
Whereas interleaved multiplication algorithms perfo rm 
simultaneously multiplication and reduction. This a rticle 
analyses and compares only two-step algorithms. Int erleaved 
algorithms are out of the scope of this work (Rodri guez-
Henriquez et al. (2006)). 

2.2  Two-step multiplication algorithms 

Let A, B, C be polynomials of degree (m-1) belonging to a 
field GF(2m), and let f(x) be an irreducible polynomial 
generating the field. We need also to define D the polynomial 
of degree 2m-2. Thus in two-step modular multiplication we 
perform:  

1) Multiplication  BAD ×= ;  
2) Reduction   )(mod xFDC = . 

The most popular methods for performing two-step 
multiplications are: classical approach (school-boo k method), 
matrix-vector approach and Karatsuba-Ofman divide 
(Karatsuba, et al. (1963)) and conquer method. The reduction 
operation can be implemented by means of multiplica tion 
that is why its details are not considered here.  

The hardware for all algorithms presented here was designed 
in VHDL. It was synthesised and implemented using X ilinx 
ISE 9.2 and the newest 12.1 environment, and target ed for 
Xilinx FPGA Spartan3E 1200. Such a small chip is su itable 
for our tests. The arithmetic operators used in cry ptosystems 
should be not only time but also area efficient so if the 
solution for multiplication exceeds the size of Spa rtan device 
it means that it is not an area efficient design.  

2.3  Standard multiplication algorithms  

There are few approaches to standard multiplication  most of 
them are based on shift-and-add method (Deschamps e t al. 
(2009)). The method is based on the idea: 
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which for m = 4 could be illustrated as follows:  
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