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A B S T R A C T

A family of generalized aging intensity functions is introduced and studied. The functions characterize lifetime
distributions of univariate positive absolutely continuous random variables. Further on, the generalized aging
intensity orders are defined and analyzed.

1. Introduction

In the paper we study properties of positive unbounded and abso-
lutely continuous random variables with distribution functions F and
corresponding density functions =f x( ) F x

x
d ( )

d positive on +∞(0, ). In the
reliability theory these variables are mainly used to describe elements
and systems life. A classic notion of the lifetime analysis is the failure
rate function of F (known also as the hazard rate function) which is
defined as

=
−

= − −r x
f x

F x
F x

x
( )

( )
1 ( )

d ln[1 ( )]
d

.F
(1)

Other related and popular notions are the cumulative failure rate
function (called often shortly hazard function)
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and the average failure rate
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[14] introduced the aging intensity of F defined by
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Note that the aging intensity function can be also determined by means
of the following formulae:
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According to the definition of survival function = −F x F x( ) 1 ( ), the
failure rate (1) can be interpreted as the local infinitesimal conditional

probability of an instantaneous failure occurring immediately after the
time point x given that the unit has survived until x. The average failure
rate (3) can be treated as a global baseline failure rate. Therefore the
aging intensity (4) is defined as the ratio of the instantaneous failure
rate rF to the average failure rate HF and expresses the average aging
behavior of the item. It describes the aging property quantitatively: the
larger the aging intensity, the stronger the tendency of aging (see [14]).

Moreover, aging intensity =L x( )F
R x

R x

( )

( )
x F

x F

d
d
1 can be treated as the

elasticity E x( )RF of the nondecreasing positive cumulative failure rate
function (2). The elasticity is an important economic notion, and its
thorough discussion can be found in [30]. If function g is differentiable

at x and g(x)≠ 0, the elasticity of g at x is defined as =E x( )g
g x

g x

( )

( )
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x

d
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measures the percentage the function g changes when x changes by a
small amount. It can be also treated as the relative accuracy of ap-
proximating value of cumulative function g(x) with use of its derivative

g x( )x
d

d . Accordingly, =L x E x( ) ( )F RF measures the percentage the cu-
mulative failure rate function changes (increases) when time x changes
(increases) by a small amount.

It is well known (see, for example [2]) that the failure rate r of an
absolutely continuous random variable X with support +∞(0, ) un-
iquely determines its distribution function F as follows:

∫⎜ ⎟= − ⎛
⎝
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0

The necessary and sufficient conditions on r for being the failure rate of
a distribution function is that r is nonnegative, and has infinite integral
over +∞(0, ). Similarly, the cumulative failure rate function R and the
average failure rate H uniquely determine their distribution function F
through the following relationships:
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For this purpose, R(x) has to increase from 0 at 0 to + ∞ at + ∞, and
clearly xH(x) has to share the property.

Contrary to the unique characterization of the distribution through
the failure rate, the cumulative failure rate function and the average
failure rate, the aging intensity L characterizes the family of distribu-
tions depending on parameter < < +∞k0 .

Theorem 1. (see [31]) Let +∞ → +∞L: (0, ) (0, ) satisfy the following
conditions:
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for all < < < +∞a b0 . Then L is an aging intensity function for the family
of absolute continuous random variables with support +∞(0, ) and their
distribution functions given by the formula
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and for every ∈ +∞k (0, ) and for some arbitrarily chosen ∈ +∞a (0, ).

Note that fixing k we determine value of FL, k at a, namely
= − −F a k( ) 1 exp( )L k, . Although in [31] a different parametrization of

the family of distributions was presented we claim that the above one is
more universal and meaningful in a general context developed here.

In Section 2, we introduce a new family of generalized aging in-
tensity functions, including the above one as a special case, and de-
scribe some properties of them. We show in Section 3 that these gen-
eralized aging intensities characterize lifetime distributions. It occurs
that some generalized aging intensity functions uniquely characterize
single distributions, and the others characterize families of distributions
dependent on scaling parameters, as in Theorem 1. Some exemplary
characterizations are presented in Section 4. In Section 5, we define
stochastic orders based on generalized aging intensities, and prove
some relations between them. Finally, in Section 6 we indicate ap-
plicability of α-generalized aging intensity function for identification of
various compound parametric models of lifetime analysis.

2. Generalized aging intensity

Observe that = ∘−R x W F x( ) ( )( ),F 0
1 where = − −W x x( ) 1 exp( ),0

x>0, is the standard exponential distribution function, and conse-
quently
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[3–5] proposed and studied a generalization of this concept and defined
the G-generalized failure rate function for an arbitrary strictly in-
creasing distribution function G with the density g. Under the as-
sumptions, the G-generalized cumulative failure function and the G-
generalized failure rate are defined by

= ∘

= = ∘ =
∘

−

−

−

R x G F x

r x
R x

x
G F x

x
f x

g G F x

( ) ( )( ),

( )
d ( )

d
d( )( )

d
( )

[( )( )]
,

G F

G F
G F

,
1

,
, 1

1

respectively (see also [27], [11], [10] for further developments). Ac-
cordingly, we define the G-generalized aging intensity as
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In the paper, we restrict ourselves to the analysis of G-generalized aging
intensity functions for G belonging to the parametric family of gen-
eralized Pareto distributions for which we obtain most intuitive inter-
pretations. We say that Xα follows a generalized Pareto distribution
with parameter ∈α if its distribution function is expressed as
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(see [24]). For negative and positive α, the distribution functions re-
present Pareto and power random variables, respectively, up to linear
transformations. Case =α 0 corresponds to the standard exponential
distribution introduced above, and represents the limit of Wα as α→ 0.
The quantile function of Wα is equal to
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Let F be a distribution function of the univariate absolutely continuous
random variable X with its density function =f x( ) F x

x
d ( )

d and support
+∞(0, ). Then
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are the Wα-generalized cumulative failure function, and the Wα-gen-
eralized failure rate, respectively. They are further simply called the α-
generalized cumulative failure function, and the α-generalized failure
rate, and denoted by Rα, F and rα, F, respectively.

Analysis of α-generalized failure rates for various α provides more
information about variability of lifetime distribution functions. The
simplest and more natural one is 1-generalized failure rate which co-
incides with the density function. The increasing and decreasing density
function gives the most rough illustration of the aging tendency of the
life random variable at various time moments. Another widely accep-
table and more subtle device is the standard 0-generalized failure rate
which compares variability of the instantaneous failing tendency ex-
pressed by the density value f(x) at time x with the cumulative failure
probability − F x1 ( ) at some moment after x. For instance, a decreasing
failure rate of some life distribution on some time interval means that
the density f(x) decreases faster than the cumulative survival function

− F x1 ( ) there. If rF(x) is increasing in some time period, then f(x)
decreases slower (it may even increase) than − F x1 ( ). Studying various
α-generalized failure rates enables us to obtain deeper comparisons of
variability rates of the density and survival functions. For instance,
decrease of the α-generalized failure rate with α<0 is a sharper con-
dition than the standard decreasing failure rate property, and gives
more detailed information about the relations between the density and
survival functions. The classes of distributions with monotone α-gen-
eralized failure rates were considered by [7–9].

Further, the α-generalized average failure rate is equal to
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Finally, the α-generalized aging intensity being the special case of the
G-generalized aging intensity (5) can be determined by the formula
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