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a b s t r a c t 

Many real-world systems in applications such as radio communication, wireless communication, and pipeline 

transportation can be modeled as linear consecutively connected systems (LCCS) with nodes forming a linear 

sequence. An LCCS provides a connection between the first and last nodes of the sequence using connecting 

elements (CEs) located at its nodes. This paper models an LCCS with repairable CEs characterized by different 

up and down time distributions, and different connection ranges. The distribution parameters of CE down times 

depend on the location of available service centers (SCs). Thus, the optimal allocation of SCs becomes a relevant 

and significant optimization problem to formulate and solve for guiding optimal decisions on LCCS maintenance. 

The objective is to find an SC allocation among predetermined positions that maximizes the expected LCCS con- 

nectivity over a specified mission time horizon. To evaluate the objective function of the proposed optimization 

problem, instantaneous availabilities of repairable CEs with arbitrary up and down time distributions are first 

determined through a numerical iterative algorithm. Instantaneous and expected LCCS connectivity are then 

evaluated using a universal generating function method. As demonstrated through examples, the proposed op- 

timization leads to significant improvements in LCCS connectivity and effective allocation and management of 

maintenance resources. 

1. Introduction 

Linear consecutively connected systems (LCCSs), originating from 

consecutive-k-out-of-n: F systems [1–3] , have received intensive re- 
search attentions in the past few decades due to their abundant applica- 
tions in diverse industry domains, such as radio communication, sensor 
monitoring, wireless communication, and pipeline transportation [4,5] . 
A key feature of LCCSs is a set of system nodes forming a linear, ordered 
sequence. Connection elements (CEs) with different connection ranges 
are allocated to these nodes to provide connectivity between the host 
node and its subsequent nodes along the sequence. They work together 
to provide a connection between the first (source) and last (destination) 
nodes of the LCCS, which defines the system connectivity [6] . 

Following the first introduction of the LCCS model in [4] , numerous 
research efforts have been expended in reliability analysis of binary- 
state and multi-state LCCSs [4,5,7,8] . A common optimization problem 

that has been relevant and solved is the optimal CE allocation problem 

(CEAP) for LCCSs with non-identical CEs. Particularly, CEs can be char- 
acterized by different connection rages, and different time-to-failure and 
time-to-repair distributions. Due to this heterogeneity, different alloca- 
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tions of CEs to the system nodes may lead to great difference in the 
LCCS performance [9,10] . Actually, it has been shown through many 
studies that an LCCS performance can be significantly enhanced through 
the optimal CE allocation [11–13] . Recently, the CEAP was solved for 
phased-mission LCCSs involving different source and destination nodes 
in multiple phases [14] . Further common-cause failures were modeled 
in [15] to consider simultaneous malfunctions of multiple CEs due to 
the same root cause in the solution to CEAP of phased-mission LCCSs. 
Extensions were also made to the generic LCCS model by allowing dis- 
connected nodes (gaps) for system functionality. In particular, LCCSs 
that can tolerate a number of single-node gaps [7,16] , a certain size of 
consecutive gaps [17] , or some combined constraint of the former two 
[18–20] have been modeled and optimized. Another latest development 
was made to address warm standby redundancy in the LCCS modeling 
and optimization [21] . 

The existing works on LCCSs mostly focused on non-repairable CEs; 
little work has been done for LCCSs with repairable CEs [12,22] . Partic- 
ularly, in [12] LCCSs subject to preventive replacement and corrective 
maintenance with constant average repair time were considered. The 
minimal repair policy was used, which assumes a malfunctioned CE, af- 
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Acronyms 

cdf cumulative distribution function 
pdf probability density function 
SCAP service center allocation problem 

LCCS linear consecutively connected systems 
ILC instantaneous LCCS connectivity 
CE connecting element 
CEAP CE allocation problem 

SC service center 
UGF universal generating function 

Nomenclature 

𝜏 mission time horizon considered 
m number of discrete time intervals 
a ( t ) instantaneous LCCS connectivity 
A ( 𝜏) expected LCCS connectivity over system mission 

time 𝜏
I number of LCCS nodes that can host CEs 
K total number of possible locations for SCs 
𝜔 a subset of the set of all the SC positions, 𝜔 ⊂

{1,2,…, K } ⟨T j , X j ⟩ event that the j th failure of a CE occurs at time 
T j and the CE spends time X j in operation mode 
before the failure 

Q j ( t, x ) joint distribution function of random values T j and 
X j for a CE 

𝜋i repair efficiency coefficient of CE located at node 
i 

J i, 𝜔 maximal number of failures of CE located at node 
i during the time horizon given SCs are located at 
positions belonging to subset 𝜔 

p i, 𝜔 ( t ) instantaneous availability of CE located at node i 
under SC allocation 𝜔 

G i ( t ) random connection range of CE located at node i 
g i connection range of operating CE located at node 

i 

𝜂i , 𝛽 i scale, shape parameters of Weibull up time distri- 
bution for CE located at node i 

f i ( t ), F i ( t ) pdf, cdf of up time for CE located at node i 
𝜓 i, 𝜔 ( t ), Ψi, 𝜔 ( t ) pdf, cdf of down time for CE located at node i given 

SCs are located at positions belonging to subset 𝜔 

D i, 𝜔 random down time for CE located at node i given 
SC are located at positions belonging to subset 𝜔 

𝑑 min 
𝜔 

( 𝑖 ) , 𝑑 max 
𝜔 

( 𝑖 ) minimal and maximal possible realizations of D i, 𝜔 

for CE located at node i 
𝜇𝜔 ( i ), 𝜎𝜔 ( i ) mean and standard deviation of the truncated 

normal distribution of D i, 𝜔 for CE located at 
node i 

L k ( t ) index of the most remote node that can be reached 
by functioning CEs located at the first k nodes at 
time t 

ter repair, is restored to an “as bad as old ” condition. In other words, 
a repaired CE has an effective age same as that right before the repair. 
In [22] , the CEAP for LCCSs with random repair time and general re- 
pair policy was addressed. The general repair policy covers the minimal 
repair, perfect repair, and imperfect repair [23–25] . In contrast to the 
minimal repair used in [12] , a perfect repair can restore a failed CE to 
an “as good as new ” condition (a repaired CE has an effective age of 0). 
As an intermediate policy, the imperfect repair can restore a failed CE 
to a condition between “as bad as old ” and “as good as new ” [26] . 

Based on the general repair model of [22] , this paper formulates and 
solves a completely new optimization problem, the optimal service cen- 
ter allocation problem (SCAP) for repairable LCCSs. Repair centers are 

the places where the equipment and personnel needed to repair failed 
CEs are located. The down time of failed CEs depends on arrival time 
of the repair team. Thus, the distance of nodes hosting CEs from the 
available closest repair service center affects the repair/down time and 
thus instantaneous availability of a failed CE, and further the connec- 
tivity performance of the overall LCCS. The objective of the proposed 
SCAP is to identify an optimal allocation of service centers among some 
predetermined locations maximizing the expected system connectivity. 
Solution to the proposed optimization problem is expected to aid in the 
optimal decisions on allocating limited maintenance resources for reli- 
able operation of LCCSs. 

The remainder of the paper is arranged as follows: Section 2 de- 
fines LCCS connectivity measures and presents the system model. 
Section 3 formulates the SCAP problem addressed in this work. 
Section 4 presents a numerical iterative algorithm for analyzing instan- 
taneous availability of CEs with random up and down times following ar- 
bitrary distributions. Section 5 presents a universal generating function 
based method for assessing instantaneous and expected system connec- 
tivity. Section 6 presents examples to illustrate the proposed optimiza- 
tion. Lastly, Section 7 concludes the paper and presents directions of 
future research. 

2. Description of LCCS model 

There are I + 1 consecutive locations (or nodes) in the considered 
binary-state LCCS. A connecting element (CE) is allocated at each of the 
first I nodes to provide a connection between the first (source) node 
and the I + 1th (sink) node. Each CE located at node i (1 ≤ i ≤ I ) is char- 
acterized by a specific connection range G i ( t ), and up and down time 
distributions. Thus, the most remote node that can be reached by this 
CE at time t is i + G i ( t ). Eq. (1) gives the most remote node that can be 
reached by the group of CEs located at the first k nodes (i.e., nodes 1, 
2,…, k ) at time t . 

𝐿 𝑘 ( 𝑡 ) = min 
{ 

𝐼 + 1 , max 
1 ≤ 𝑖 ≤ 𝑘 { 𝑖 + 𝐺 𝑖 ( 𝑡 )} 

} 

. (1) 

In case of L k ( t ) < k + 1 for any k (1 ≤ k < I ), node k + 1 is disconnected 
from all the preceding nodes, and thus the source and sink nodes can- 
not be connected. Therefore, the connectivity condition of the consid- 
ered LCCS at time t can be given as (2) , which returns 1 if the LCCS is 
connected and 0 otherwise. 

𝜙( 𝐺 1 ( 𝑡 ) , … , 𝐺 𝐼 ( 𝑡 ) ) = 

𝐼 ∏
𝑘 =1 

1( 𝐿 𝑘 ( 𝑡 ) > 𝑘 ) (2) 

The instantaneous LCCS connectivity (ILC) at a particular time in- 
stant t can be defined as a ( t ) = Pr( 𝑎 ( 𝑡 ) = 𝑃 𝑟 ( 𝜙( 𝐺 1 ( 𝑡 ) , … , 𝐺 𝐼 ( 𝑡 ) ) = 1). Usu- 
ally technical systems are planned to operate during specific time hori- 
zon after which their elements are replaced and/or structure is changed 
(due to changes in technology, conditions of functioning and/or system 

mission). Thus the availability analysis beyond the planned horizon has 
no sense and the LCCS behavior is modeled within a time horizon 𝜏. The 
expected LCCS connectivity over a time horizon 𝜏 (denoted by A ( 𝜏)) can 
thus be given as 

𝐴 ( 𝜏) = 

1 
𝜏 ∫

𝜏

0 
𝑎 ( 𝑡 ) 𝑑𝑡 . (3) 

There are K possible positions in which service centers (SCs) can be 
located. Any allocation of SCs can be represented by a subset 𝜔 of the 
set of all the positions: 𝜔 ⊂ {1,2,…, K }. The down time distributions of 
CEs depend on the distance of nodes from the closest SC, which provides 
repair service to the failed CE. Thus, for any SCs allocation 𝜔 , the down 
time of any CE located at node i is randomly distributed in the interval 
[ 𝑑 min 

𝜔 
( 𝑖 ) , 𝑑 max 

𝜔 
( 𝑖 ) ]. The cumulative distribution function ( cdf ) Ψi, 𝜔 ( t ) of 

the random down time is known and such that Ψi, 𝜔 ( t ) = 0 for t < 𝑑 min 
𝜔 

( 𝑖 ) 
and Ψi, 𝜔 ( t ) = 1 for t > 𝑑 max 

𝜔 
( 𝑖 ) . 

The number of repairs experienced by the CE located at node i dur- 
ing time 𝜏 cannot exceed 𝜏/ 𝑑 min 

𝜔 
( 𝑖 ) . Thus, the maximal number of failures 
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