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A B S T R A C T

Phased-mission systems (PMSs) are common in many real-world applications. A PMS has to accomplish a
mission with multiple phases with varied requirements on system operation and demand. Reliability evaluation
of PMSs is more challenging than single-phased systems due to dynamics in system configuration (or structure
function) and component behavior, as well as inherent inter-phase dependence. Though many efforts have been
dedicated to the PMS reliability analysis, it is still difficult to evaluate the reliability of a large-scale PMS with
many phases. In this paper, we make original contributions by proposing a new combinatorial model, named
aggregated binary decision diagram (ABDD) for reliability analysis of non-repairable parallel PMSs subject to
dynamic demand requirements. The proposed approach constructs a single ABDD model considering failure
combinations in all phases simultaneously, enabling efficient analysis of PMSs with many phases. The approach
is also extended to address the effects of fault level coverage. Examples of PMSs with different scales are ana-
lyzed to demonstrate application and efficiency of the proposed ABDD-based approach.

Notations

n Number of components in the system
Ai The ith component in the PMS, = …i n1, ,
M Number of phases in the mission
Tj Duration of phase j
wi,j Nominal capacity of Ai in phase j
dj Mission demand of phase j, = …j M1, ,
Fi( · ), Ri( · ) Baseline cumulative distribution function/reliability func-

tion of Ai

αi, j Lifetime acceleration factor for component Ai in phase j
Ξi Mission phase in which component Ai fails
pi,j Probability that Ai fails in phase j, = =p jPr{Ξ }i j i,

+pi M, 1 Probability that Ai survives the mission,
= = ++p MPr{Ξ 1}i M i, 1

Pi,j, Qi,j Probability that Ai fails/survives before +j 1, + =P Q 1i j i j, ,
ci, j Capacity of Ai in phase j, taking value of wi, j or 0
ci Capacity vector of Ai, = …c c c( , , )i i i M,1 ,
Cj System capacity in phase j
C Capacity vector of the PMS, = …C C C( , , )M1

el A path in the ABDD
Jl Index of a critical phase for path el, J = <

≤ ≤
C dmax ( )l

j M
l j j

1
,

Fl Set of failed components on a path el
Al Set of failure combinations where all and only components in

Fl fail in the mission
Bl Set of failure combinations where all and only components in

Fl fail before phase J +( 1)l
R Set of failure combinations leading to mission success
El Set of failure combinations aggregated in path el,

A R= ∩El l
βr Fault coverage probability for the rth component failure
RS System reliability with perfect fault coverage, R=R Pr{ }S
RS, FLC System reliability considering FLC

1. Introduction

A phased-mission system (PMS) is a system that has to accomplish a
mission with multiple tasks sequentially [27]. These tasks have dif-
ferent requirements on the system configuration and operation, and the
operating environments may vary during different phases. As a result,
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the system would experience different stress levels, system success
criteria and component failure behavior across the mission [29]. In
addition, the state of one component at the end of one phase is identical
to its state at the beginning of the next phase, which inherently in-
troduces inter-phase dependence. Therefore, reliability modeling of
PMSs is more challenging than single-phased systems.

Many efforts have been devoted to the reliability modeling of PMSs,
see, e.g., [1,6,8,11,12,19,20,22,25,26,31]. In terms of adopted analy-
tical modeling techniques for PMSs, there are state space oriented ap-
proaches based on Markov chains or Petri nets [5,11,23], combinatorial
methods [14,20,24,25,30,31], and modular solutions based on binary
decision diagram (BDD) and Markov chains [18]. Though the state
space oriented approaches can explicitly model the state transition in
the system and handle dynamic PMSs with random phase durations,
they suffer the well-known space explosion problem for large-scale
systems. In contrast, the combinatorial methods are effective in ana-
lyzing larger scale systems by exploiting BDD to reduce the computa-
tional complexity [9,10].

The BDD is an acyclic directed graph based on Shannon's decom-
position of Boolean functions [4]. It has been widely used in reliability
engineering since 1990s due to its computational advantage over tra-
ditional cut/path-sets based methods [13,21]. In 1999, BDD was first
applied to the reliability modeling of PMSs [5], where the number of
variables introduced to construct the system model is proportional to
the number of system components multiplied by the number of phases.
Phase algebra and new BDD generation and evaluation operations were
developed to handle the dependence across phases. In Xing and Dugan
[29], the BDD-based approach was extended to analyze reliability of a
general PMS with combinatorial phase requirements, imperfect fault
coverage (IFC) and multiple grade-level performance criteria. Xing [27]
made a further extension to the PMS BDD method considering common-
cause failures. However, due to the nature of the BDD model, all these
existing BDD-based methods can still face severe computational com-
plexity when the number of mission phases is large.

To address these difficulties, we propose a new combinatorial
method named aggregated BDD (ABDD) for reliability modeling and
analysis of parallel PMSs with heterogeneous components subject to
dynamic demand. Real-world examples of such PMSs include power
systems, engine systems of airplanes, and multi-processor data proces-
sing systems [12,15,28,29]. In the proposed approach, a single ABDD is
constructed considering the requirements and success criteria of all the
mission phases. The scale of ABDD is independent of the number of
phases, which significantly reduces the computational complexity of
the proposed approach.

The remainder of the paper is organized as follows. Section 2 gives a
detailed description of the parallel PMS considered in this work.
Section 3 discusses the traditional BDD-based method by constructing
individual BDD for each phase. Section 4 presents the ABDD-based
approach for system reliability evaluation. Section 5 gives examples of
different scales to illustrate the application and efficiency of the pro-
posed method. Section 6 concludes the paper and points out directions
for future study.

2. Parallel PMS with heterogeneous components

Consider a non-repairable system with n statistically independent
components …A A, , n1 working in parallel. Each component is binary,
i.e., normal or failed. The lifetime of component Ai follows an arbitrary
baseline distribution with cumulative distribution function Fi(t). A
failed component would stay in the failure state for the rest of the
mission.

The system has to complete a mission with M successive phases. The
duration of phase j has a predetermined length = …T j M, 1, ,j .
Component Ai may fail in any of the M phases or survive the mission.
Denote the phase where Ai fails by Ξi, which is a discrete random
variable and may take values of … +M1, , 1. Here, = +MΞ 1i indicates

that Ai survives the mission. Due to variation of working conditions, the
failure rate of a component may vary in different phases. Based the
accelerated failure time model and the cumulative exposure model
[17], component Ai in phase j suffers an acceleration factor αi,j. More
specifically, the virtual lifetime of Ai in phase j in an interval Δt is αi,jΔt
when transformed to the baseline lifetime. Therefore, the probability
that Ai fails in phase j is
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and the probability that Ai survives the mission is
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The probabilities that Ai fails before phase +j 1 and Ai survives
before phase +j 1 are = ∑ =P pi j k

j
i j, 1 , and = −Q P1i j i j, , , respectively.

Define =P 0i,0 and =Q 1i,0 .
Each component has a nominal capacity wi,j in phase j when it is in

the normal state. Here, wi,j can vary with j to account for the perfor-
mance dependence of Ai on environments, working conditions, etc.
Depending on the phase Ξi where Ai fails, the capacity ci,j that Ai can
sustain in phase j can take value of wi,j or 0. Clearly, ci,j is a function of
Ξi, =c c (Ξ )i j i j i, , . The system capacity in phase j is equal to the sum of the
working components’ capacity: = ∑=C cj i

n
i j1 , . The system capacity has to

meet a predetermined mission demand dj in phase j, and the mission
succeeds if the demand is satisfied in all the phases. A practical example
of such systems is the power system in a region, which consists of
multiple power plants with variable capacity. The system capacity has
to meet the power demand that may also vary with time.

Given the phase = ξΞi i that Ai fails for = …i n1, , , the capacity of
each component and the system capacity in all the M phases are de-
termined. Accordingly, the success or failure of the system, as a bino-
mial random variable, is determined conditional on the failure combi-
nation …ξ ξ( , , )n1 . Define

= … ≤ ≤ + ≤ ≤ξ ξ ξ M i nΩ {( , , ) 1 1, 1 }n i1

and

R ∑= ⎧
⎨
⎩
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i

n

i j i j1
1

,

Here, Ω is the universal set of failure combinations with =Pr{Ω} 1,
and R denotes the set of failure combinations that lead to mission
success. Thus, the system reliability is R=R Pr{ }S .

Peng, et al [20] developed a multi-valued decision diagram (MDD)-
based approach to efficiently enumerate the failure combinations for
system reliability calculation. However, the MDD method still has the
worst-case computational complexity being exponential to the number
of phases. In particular, the scale of the MDD model can increase ra-
pidly with the increase of the number of phases. To facilitate the re-
liability evaluation of PMSs, a new ABDD-based approach is proposed
to efficiently deal with missions involving many phases. In the fol-
lowing, we first present a preliminary approach using traditional BDDs,
from which the ABDD is developed.

3. Preliminary approach based on BDD for each phase

Given that Ai is in operation at the beginning of phase j, it may fail
or survive phase j. Correspondingly, there will be a capacity loss of wi, j

to the system if Ai fails and 0 otherwise. The two possible scenarios can
be modeled by a traditional BDD with two branches, as shown in Fig. 1.
In the figure, the node Ai,j denotes component Ai in phase j. Each branch
represents a possible scenario of Ai,j while the corresponding terminal
value represents the capacity loss due to Ai,j.

We can build the BDD representation for each component in the

Q. Zhai et al. Reliability Engineering and System Safety 176 (2018) 242–250

243



Download English Version:

https://daneshyari.com/en/article/7195154

Download Persian Version:

https://daneshyari.com/article/7195154

Daneshyari.com

https://daneshyari.com/en/article/7195154
https://daneshyari.com/article/7195154
https://daneshyari.com

