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a b s t r a c t 

Dynamic Event Tree (DET) analysis allows for integrated deterministic and probabilistic safety assessment by 

coupling thermal-hydraulic system models with safety system and operator response models. It is a realistic but 

computationally challenging approach for risk quantification in a nuclear power plant. DET can also provide a 

two-loop nested framework to quantify uncertainty arising from aleatory and epistemic parameters of the risk 

assessment model. However, the propagation of uncertainties in a DET is a challenge, since the set of uncer- 

tain parameters is often very large and the computational cost of each run can be significant (e.g. prolonged 

station-blackout scenarios). In this case, the intensive calculation required to propagate epistemic and aleatory 

uncertainty in two-loop approaches with usual Monte Carlo sampling makes the DET computationally impracti- 

cal for uncertainty quantification in many complex nuclear power plant transient applications. To overcome this 

computational burden, a sampling approach called Deterministic Sampling (DS) is adapted and evaluated in this 

work as a potentially more efficient alternative to Monte Carlo sampling. The application and performance of DS 

are first tested by quantifying the system failure probability for an illustrative problem, including the propagation 

of uncertainties. Subsequently, DS is applied to a DET analysis of a realistic nuclear power plant transient, namely, 

a Station Blackout with feed and bleed sequence. The impact of epistemic and aleatory uncertainty on the core 

damage frequency contribution from the accident sequence of Zion power plant is evaluated using discrete DET 

and deterministic sampling based DET approaches. The comparison and analysis of the results reveal that the 

DS-based approach is computationally efficient and practical. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The risk of a Nuclear Power Plant (NPP) is typically evaluated 

through Probabilistic Safety Assessment (PSA). The Core Damage Fre- 

quency (CDF) is one of the risk measures estimated in classical PSA (e.g. 

level 1); it is determined using event tree / fault tree analysis for nu- 

merous accident sequences. In risk quantification, both epistemic and 

aleatory uncertainties are present due to inherent physical and safety 

system variability and their model parameters. Aleatory uncertainties 

are inherent and irreducible in nature, like the response of a safety sys- 

tem on demand, the initial core power or the break size when a Loss of 

Coolant Accident (LOCA) is assumed, whereas epistemic uncertainties 

arise from lack of knowledge. Uncertainties in failure probability dis- 

tribution parameters of safety equipment or in Thermal Hydraulic (TH) 

closure models parameters are epistemic. Both types of uncertainties can 
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significantly impact the accident dynamics and consequently the risk 

estimate. Therefore, both should be considered in the uncertainty quan- 

tification. Ignoring any one could lead to inappropriate estimation of 

risk and its uncertainties. PSA of a NPP as currently implemented prop- 

agates the epistemic uncertainties in failure probabilities, rates, and fre- 

quencies, but the uncertainties in physical model (parameters) are not 

propagated. 

DETs [1 , 2] , which integrate plant physics models with stochastic 

equipment and crew response models, can provide a framework to treat 

uncertainties of both physical model and safety system models, besides 

capturing the impact of their dynamic interactions. Several DET imple- 

mentation tools such as ADS-RELAP [3] , MCDET-MELCOR [4] , ADAPT- 

MELCOR [5 , 6] , SCAIS [7 , 8] and RAVEN-RELAP [9] are available in the 

literature. However the propagation of uncertainties in a DET is a chal- 

lenge, since the set of uncertain parameters is often very large and the 

computational cost of each run can be significant (e.g. prolonged station- 

blackout scenarios). In this case propagating epistemic and aleatory un- 
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Nomenclature 

AFW Auxiliary Feed W 

AFWS Auxiliary Feed Water System 

CDF Core Damage Frequency 

DDET Discrete Dynamic Event Tree 

DET Dynamic Event Tree 

DSDET Deterministic Sampling based Dynamic Event Tree 

DS Deterministic Sampling 

FB Feed and Bleed 

FP Failure Probability 

IL Inner Loop 

LHS Latin Hypercube Sampling 

LOCA Loss of Coolant Accident 

LOSP Loss of Offsite Power 

MC Monte Carlo 

NPP Nuclear Power Plant 

OL Outer loop 

PCE Polynomial Chaos Expansion 

PCT Peak Cladding Temperature 

PDF Probability Distribution Function 

PORV Power Operated Relief Valve 

PRZ Pressurizer 

PSA Probabilistic Safety Assessment 

PWR Pressurized Water Reactor 

SG Steam Generator 

SI Safety Injection 

SP Sigma Point 

SBO Station Blackout 

TH Thermal Hydraulic 

UKF Unscented Kalman Filter 

UQ Uncertainty Quantification 

UT Unscented Transformation 

certainty in two loop approaches with usual Monte Carlo (MC) sampling 

requires enormous computational requirements which can easily chal- 

lenge even today’s computational infrastructure [10 , 11] . To the knowl- 

edge of the authors, the treatment of the epistemic uncertainties and 

variability in initial conditions in DET frameworks has not been demon- 

strated for realistic PSA of power plants. The main reason for this limita- 

tion is that the computational requirements to achieve reasonable accu- 

racy in the risk estimate are very large. Usage of parallel or distributed 

computing is desirable; for example the DET tool ADAPT which focuses 

on level-2 PSA scenarios was equipped with such capability [6] . 

To reduce the computational effort different sampling techniques are 

introduced in the literature. For example adaptive sampling is reported 

in [12] . In this sampling method a few output responses are obtained 

from the simulation, a surrogate model is built to represent the response 

space, and new samples are selected based on the model constructed. 

The surrogate model is then updated based on the simulation results 

of the sampled points. Thus, effort has been given to gain the most in- 

formation possible with a small number of selected samples and conse- 

quently reduce the number of computationally expensive trials needed 

to understand features of the response space [12] . An application of 

adaptive sampling to evaluate maximum core temperature depending 

on two uncertain parameters is presented in [13] . Other sampling tech- 

nique available in the literature are stratified Latin Hypercube Sampling 

(LHS) [14,5] , Taguchi orthogonal array based sampling [15] , etc. 

Other possible way to overcome the computational burden is to build 

a fast-running surrogate regression model (e.g. response surface) in or- 

der to approximate the input/output function of the real process simula- 

tion model [16 , 17] . An example on the development of a core relocation 

surrogate model for the prediction of debris properties in lower head in 

an ex-vessel severe accident sequence based on the MELCOR code (con- 

sidered as the full model) is provided in [18] . 

Adaptive sampling requires building a response surface, which in- 

volves a substantial and complex model calibration effort. Further, the 

efficacy of adaptive sampling for problems with more than two uncer- 

tain parameters has not yet been demonstrated. The convergence of LHS 

compared to MC is better but the number of samples required for LHS is 

still not appealing. Hessling showed with an illustrative one-parameter 

problem that, even for 100 samples, the second moments of true results 

vary noticeably [19] . The convergence is generally poorer for higher or- 

der moments. Regarding the application of the orthogonal array-based 

sampling for uncertainty propagation, very limited information can be 

found in the literature. The construction of fast running surrogate (re- 

gression) models requires significant model training efforts and building 

of a code surrogate in place of the original simulation model is applica- 

tion specific. 

To overcome the above mentioned shortcomings, recently Polyno- 

mial Chaos Expansion (PCE) was explored by Eldred et al. [20] . A PCE is 

a general framework of representing an arbitrary random variable of in- 

terest as a function of another random variable with a given distribution, 

and of representing that function as a polynomial expansion. Orthogo- 

nal polynomials (e.g. Hermite, Legendre, Laguerre, Jacobi) are used for 

approximating the effect of uncertain variables described by a proba- 

bility distributions (e.g. normal, uniform, exponential, beta, gamma). 

The objective of a PCE is to determine the unknown coefficients of the 

polynomials in the series expansion. Usually, these coefficients can be 

calculated from a limited number of model simulations. There are differ- 

ent techniques to calculate these co efficient as described details in [20] . 

Application of PCE for propagating epistemic and aleatory uncertainty 

in a two loop approach is presented in [20] . The efficiency of PCE over 

LHS is demonstrated by evaluating a limit function of a short column 

test problem (see more details in [20] ). 

In this study we focus on Deterministic Sampling (DS) [19] , an alter- 

native method. The method appears to be efficient since relatively few 

simulations are required, and many parameters can be handled with few 

deterministic samples. The sample size is a key aspect which provides 

motivation for evaluating deterministic sampling as an efficient uncer- 

tainty quantification method in reactor safety analysis. 

1.1. Scope and objectives of the work 

The purpose of this work is to adapt and evaluate DS [19] as a compu- 

tationally efficient Uncertainty Quantification (UQ) method for reactor 

safety analysis. Especially with this sampling strategy we want to alle- 

viate the computational requirements that limit the application of DET 

to realistic NPP transients and simulation with system TH codes. 

DS has its origin in the field of Unscented Kalman Filter (UKF) de- 

veloped by Julier and Uhlmann [21] and used in several domains of 

electrical engineering [19,21,22] . The basic idea behind DS is that a con- 

tinuous Probability Distribution Function (PDF) can be substituted by a 

set of discrete weighted samples, called Sigma Points (SP), if the two 

representations have the same statistical moments [23] . These SP are 

few in number. As a result the number of required simulations reduces 

substantially. This is the key point enabling for practical uncertainty 

quantification. However, application of DS beyond its original imple- 

mentation in the UKF is quite limited. Hedberg et al. in [23] applied 

DS to propagate uncertain input parameters in a classical computation 

fluid dynamic simulation of turbulent flow over a backward facing step. 

In our recent contribution [24] , DS was applied to a probabilistic anal- 

ysis of realistic NPP transient. However, in that study, epistemic and 

aleatory uncertainty were mixed and treated together, limiting the abil- 

ity to determine the respective contributions of epistemic and aleatory 

parameters to the total uncertainty, information that is essential for the 

effective management of uncertainty as well as decision-making. Fur- 

ther, uncertainty in PSA parameters was not included in that study. 
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