
Reliability Engineering and System Safety 174 (2018) 12–18 

Contents lists available at ScienceDirect 

Reliability Engineering and System Safety 

journal homepage: www.elsevier.com/locate/ress 

Modeling of machine interference problem with unreliable repairman and 

standbys imperfect switchover 

Jau-Chuan Ke 

a , Tzu-Hsin Liu 

a , Dong-Yuh Yang 

b , ∗ 

a Department of Applied Statistics, National Taichung University of Science and Technology, Taichung, Taiwan 
b Institute of Information and Decision Sciences, National Taipei University of Business, Taipei, Taiwan 

a r t i c l e i n f o 

Keywords: 

Cost effectiveness maximization 

Imperfect switchover 

Machine interference problem 

Optimization 

Supplementary variable method 

a b s t r a c t 

This investigation is concerned with an M/G/1 machine interference problem with imperfect switchover of stand- 

bys, in which an unreliable repairman maintains a group of machines. An unreliable repairman means that the 

repairman is typically subject to unpredictable breakdowns. The time between two consecutive breakdowns fol- 

lows an exponential distribution, and recovery time of the unreliable repairman follows a general distribution. 

The lifetime of operating/standby machines and the repair time of failed machines are exponentially and gener- 

ally distributed, respectively. Using the method of supplementary variable, the stationary probability distribution 

is obtained. We develop some performance measures and system reliability indices. Furthermore, the cost effec- 

tiveness maximization is also discussed. Finally, a cost model is proposed to find the optimal numbers of operating 

and standby substations, which minimize the average cost per unit time. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Machine interference problem has attracted much attention due to a 

wide range of real-world situations, such as computer systems, manufac- 

turing/production assembly system systems, and aircraft maintenance. 

For more detail on this topic, the readers are referred to survey papers 

by Stecke and Aronson [23] and Haque and Armstrong [5] . In litera- 

ture, machine interference problems with a reliable server/repairman 

have been investigated by several authors, including Gupta and Rao 

[4] , Jain et al. [9] , Ke and Lin [13] , Wang et al. [24,27] , and Yang 

and Chang [28] . But, in many real-world applications, we frequently en- 

counter the case that the server/repairman breaks down unpredictably. 

The machine interference problems with server/repairman breakdowns 

can be referred to Jain and Bhargava [8] , Yang and Chiang [29] , Yen 

et al. [30] , Jain and Meena [11] , and references therein. 

The standby redundancy is commonly used to improve reliability and 

availability of the system in reliability engineering. Liu et al. [21] stud- 

ied a cold standby repairable system with working vacations and vaca- 

tion interruption, where the lifetime of components and the repair time 

of the repairman follow Phase-type (PH) distributions. Zhang and Wang 

[31] proposed the extended geometric process repair model (EGPRM) 

for a cold standby repairable system with two dissimilar components 

and one repairman. Levitin et al. [18] recently proposed an iterative al- 

gorithm to evaluate the reliability of multi-state standby systems, where 

elements can be repaired in standby state, but cannot be repaired in op- 
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eration. Lewis [20] was the first to introduce the concept of standby 

imperfect switchover in reliability study. Wang et al. [26] examined the 

reliability and availability characteristics for four various system con- 

figurations with warm standby components and imperfect switchover 

of standbys. Huang et al. [7] analyzed a repairable system with standby 

imperfect switchover in fuzzy environments. Reliability analysis asso- 

ciated with imperfect switchover and reboot delay of standbys in a re- 

pairable system with multi-repairmen conducted by Ke et al. [12] . As 

for a degradable system with standby imperfect switchover and reboot 

delay, El-Damcese and Shama [3] obtained the reliability function and 

mean time to system failure in explicit expressions. A matrix method 

was used to investigate the M/M/R machine interference problem with 

standby imperfect switchover and reboot delay by Hsu et al. [6] , in 

which the coefficient of repair pressure is considered. For other related 

literature on the systems with standby imperfect switchover, we refer 

the readers to Wang and Chen [25] , Jain and Rani [10] , Levitin et al. 

[19] , Ke and Liu [14] , Lee [17] , and Kuo and Ke [16] . Recently, Ke et al. 

[15] derived the stationary probabilities of an M/G/1 machine interfer- 

ence problem with imperfect switchover of standbys using the supple- 

mentary variable method. Shekhar et al. [22] provided the elaborate 

analysis of transient and stationary performance measures for the ma- 

chine repair problem with geometric reneging and imperfect switchover 

of standbys. 

In past, there has been extensive research on systems with imperfect 

switchover of standby. However, to the best of our knowledge, no study 
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has considered an unreliable server/repairman in such systems. It moti- 

vates us to study the M/G/1 machine interference problem with server 

breakdowns and imperfect switchover of standbys. Consequently, this 

paper can be viewed as an extension of the model discussed by Ke et al. 

[15] . The paper is structured as follows. Section 2 describes the machine 

interference model with application to a smart grid. In Section 3 , we use 

the supplementary variable method to analyze the probability distribu- 

tion of the number of failed substations in the system. Some system char- 

acteristics and system reliability indices are developed in Section 4 . We 

study the cost effectiveness maximization in Section 5 . In Section 6 , an 

average cost function is formulated to search for the optimum numbers 

of operating and standby substations at the minimum cost. In Section 7 , 

we draw concluding remarks. 

2. Model description 

A smart grid is an electricity network that uses communication tech- 

nology, sensors and other advance technologies for on-line monitor- 

ing of power transformers. It improves power reliability and enhances 

power utilization. The smart grid was introduced to overcome the weak- 

nesses of conventional electrical grid with the aid of smart net meters 

(see [1] ). Therefore, smart grid has attracted a huge attention in recent 

years. We consider a smart grid system to illustrate the potential appli- 

cation of the machine interference problem with an unreliable repair- 

man and standbys imperfect switchover. There are 𝐿 = 𝑀 + 𝑊 homoge- 

neous substations with M operating substations and W spare substations. 

Each substation fails independently of the others. The system consists of 

an imperfect switching mechanism when an operating substation fails. 

Thus, a failed substation is replaced by an available standby substation 

with probability 1 − 𝑞. Assume that the lifetimes of the operating and 

standby substations follow exponential distributions with rates 𝜆 and 𝛼

(0 < 𝛼 < 𝜆), respectively. Whenever an operating or standby substation 

fails, it is immediately sent to repair. The failed substation is repaired 

by a repairman. The time-to-repair of a failed substation has probability 

distribution function G ( t )( t ≥ 0), probability density function g ( t ), hazard 

rate function 𝜇( 𝑡 ) = 𝑔( 𝑡 ) (1 − 𝐺( 𝑡 )) −1 , and mean repair time 1/ 𝜇. 

In addition, the repairman breaks down during busy periods, and 

the time between two consecutive breakdowns is assumed to be expo- 

nentially distributed with rate 𝜉. When a breakdown occurs, the re- 

pairman is sent to recovery. The recovery time has a general distri- 

bution B ( t )( t ≥ 0), probability density function b ( v ), hazard rate func- 

tion 𝛽( 𝑡 ) = 𝑏 ( 𝑡 ) (1 − 𝐵( 𝑡 )) −1 , and mean recovery time 1/ 𝛽. When there are 

less than M substations in operation, the system shuts down. Note that 

throughout this paper for any function Ω( t ), the notation Ω̄( 𝑡 ) represents 

1 − Ω( 𝑡 ) and Ω∗ ( t ) is the Laplace–Stieltjes transform of Ω( t ). 

The following notations are used throughout this paper. 

𝑀 Umber of operating substations 

𝑊 Number of standby substations 

𝜆 Failure rate of operating substations 

𝛼 Failure rate of standby substations 

𝜉 Breakdown rate of the repairman 

𝜇 Repair rate of failed substations 

𝛽 Recovery rate of the breakdown repairman 

𝑞 Unsuccessful witching probability 

3. The analysis 

We define the probabilities as follows: 

Q 0, L ( t ) ≡ probability that there are L substations in operation and 

the repairman is busy at time t ; 

Q 0, n ( t, y ) ≡ probability that there are n substations in operation and 

the repairman is busy where the repair time of failed substations 

Y ( t ) is between y and dy at time t , 𝐿 − 1 ≤ 𝑛 ≤ 𝑀 − 1 ; 

Q 1, n ( t, y, z ) ≡ probability that there are n substations in operation 

and the repairman is breakdown where the repair time of failed 

substations Y ( t ) = y and the recovery time of the breakdown re- 

pairman Z ( t ) is between z and dz at time t , 𝐿 − 1 ≤ 𝑛 ≤ 𝑀 − 1 . 

In steady-state, let us define 

𝑄 0 ,𝑛 ( 𝑦 ) = lim 

𝑡 →∞
𝑄 0 ,𝑛 ( 𝑡, 𝑦 ) , 𝑄 1 ,𝑛 ( 𝑦, 𝑧 ) = lim 

𝑡 →∞
𝑄 1 ,𝑛 ( 𝑡, 𝑦, 𝑧 ) , 

𝑄 0 ,𝑛 = ∫
∞

0 
𝑄 0 ,𝑛 ( 𝑦 ) 𝑑𝑦 and 𝑄 1 ,𝑛 = ∫

∞

0 ∫
∞

0 
𝑄 1 ,𝑛 ( 𝑦, 𝑧 ) 𝑑𝑦 𝑑𝑧 . 

The state-transition-rate diagram of the system is given in Fig. 1 . We 

relate the states of the system at two consecutive time epochs, t and 

𝑡 + 𝑑𝑡 , and take dt →0. The integro-differential equations governing the 

system are constructed as following: 

𝛾0 𝑄 0 ,𝐿 = ∫
∞

0 
𝜇( 𝑦 ) 𝑄 0 ,𝐿 −1 ( 𝑦 ) 𝑑𝑦 , (1) 

𝑑 𝑄 0 ,𝐿 −1 ( 𝑦 ) 
𝑑𝑦 

+ 

(
𝛾1 + 𝜉 + 𝜇( 𝑦 ) 

)
𝑄 0 ,𝐿 −1 ( 𝑦 ) = ∫

∞

0 
𝛽( 𝑧 ) 𝑄 1 ,𝐿 −1 ( 𝑦, 𝑧 ) 𝑑𝑧 , (2) 

𝑑 𝑄 0 ,𝐿 − 𝑖 ( 𝑦 ) 
𝑑𝑦 

+ 

(
𝛾𝑖 + 𝜉 + 𝜇( 𝑦 ) 

)
𝑄 0 ,𝐿 − 𝑖 ( 𝑦 ) 

= 𝜆𝑖 −1 𝑄 0 ,𝐿 − 𝑖 +1 ( 𝑦 ) + 

𝑖 −2 ∑
𝑗=1 

𝜑 𝑖 − 𝑗−1 𝑄 0 ,𝐿 − 𝑗 ( 𝑦 ) 

+ ∫
∞

0 
𝛽( 𝑧 ) 𝑄 1 ,𝐿 − 𝑖 ( 𝑦, 𝑧 ) 𝑑𝑧 , 2 ≤ 𝑖 ≤ 𝑊 , (3) 

𝑑 𝑄 0 ,𝑀−1 ( 𝑦 ) 
𝑑𝑦 

+ ( 𝜉 + 𝜇( 𝑦 ) ) 𝑄 0 ,𝑀−1 ( 𝑦 ) = 𝛾𝑊 

𝑄 0 ,𝑀 

( 𝑦 ) + 

𝑊 −1 ∑
𝑗=1 

𝜃𝑗 𝑄 0 ,𝐿 − 𝑗 ( 𝑦 ) 

+ ∫
∞

0 
𝛽( 𝑧 ) 𝑄 1 ,𝑀−1 ( 𝑦, 𝑧 ) 𝑑𝑧 , (4) 

𝑑 𝑄 1 ,𝐿 −1 ( 𝑦, 𝑧 ) 
𝑑𝑧 

+ 

[
𝛾1 + 𝛽( 𝑧 ) 

]
𝑄 1 ,𝐿 −1 ( 𝑦, 𝑧 ) = 0 , (5) 

𝑑 𝑄 1 ,𝐿 − 𝑖 ( 𝑦, 𝑧 ) 
𝑑𝑧 

+ 

[
𝛾𝑖 + 𝛽( 𝑧 ) 

]
𝑄 1 ,𝐿 − 𝑖 ( 𝑦, 𝑧 ) 

= 𝜆𝑖 −1 𝑄 1 ,𝐿 − 𝑖 +1 ( 𝑦, 𝑧 ) + 

𝑖 −2 ∑
𝑗=1 

𝜑 𝑖 − 𝑗−1 𝑄 1 ,𝐿 − 𝑗 ( 𝑦, 𝑧 ) , 2 ≤ 𝑖 ≤ 𝑊 , (6) 

𝑑 𝑄 1 ,𝑀−1 ( 𝑦, 𝑧 ) 
𝑑𝑧 

+ 𝛽( 𝑧 ) 𝑄 1 ,𝑀−1 ( 𝑦, 𝑧 ) = 𝛾𝑊 

𝑄 1 ,𝑀 

( 𝑦, 𝑧 ) + 

𝑊 −1 ∑
𝑗=1 

𝜃𝑗 𝑄 1 ,𝐿 − 𝑗 ( 𝑦, 𝑧 ) , 

(7) 

where 𝛾𝑖 = 𝑀𝜆 + ( 𝑊 − 𝑖 ) 𝛼, 0 ≤ 𝑖 ≤ 𝑊 ; 𝜆𝑖 = 𝑀𝜆( 1 − 𝑞 ) + ( 𝑊 − 𝑖 ) 𝛼, 0 ≤ 

𝑖 ≤ 𝑊 − 1 ; 𝜑 𝑖 = 𝑀𝜆𝑞 𝑖 ( 1 − 𝑞 ) , 1 ≤ 𝑖 ≤ 𝑊 − 1 ; 𝜃𝑖 = 𝑀𝜆𝑞 𝑊 − 𝑖 , 0 ≤ 𝑖 ≤ 𝑊 − 

1 . 
The boundary conditions are given as follows: 

𝑄 0 ,𝐿 −1 ( 0 ) = ∫
∞

0 
𝜇( 𝑦 ) 𝑄 0 ,𝐿 −2 ( 𝑦 ) 𝑑𝑦 + 𝜆0 𝑄 0 ,𝐿 , (8) 

𝑄 0 ,𝐿 − 𝑖 ( 0 ) = ∫
∞

0 
𝜇( 𝑦 ) 𝑄 0 ,𝐿 − 𝑖 −1 ( 𝑦 ) 𝑑𝑦 + 𝜑 𝑖 −1 𝑄 0 ,𝐿 , 2 ≤ 𝑖 ≤ 𝑊 , (9) 

𝑄 1 ,𝐿 − 𝑖 ( 𝑦, 0 ) = 𝜉𝑄 0 ,𝐿 − 𝑖 ( 𝑦 ) , 1 ≤ 𝑖 ≤ 𝑊 + 1 . (10) 

Solving the above integro-differential Eqs. (5) –(7) with boundary 

conditions (8) –(10), we obtain 

𝑄 1 ,𝐿 −1 ( 𝑦, 𝑧 ) = 𝜉𝐵̄ ( 𝑧 ) 𝑒 − 𝛾1 𝑧 𝑄 0 ,𝐿 −1 ( 𝑦 ) , (11) 
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