
Reliability Engineering and System Safety 173 (2018) 23–33 

Contents lists available at ScienceDirect 

Reliability Engineering and System Safety 

journal homepage: www.elsevier.com/locate/ress 

Simplification of inclusion–exclusion on intersections of unions with 

application to network systems reliability 

Lukas Schäfer a , ∗ , Sergio García 

a , Vassili Srithammavanh 

b 

a School of Mathematics, The University of Edinburgh, Edinburgh, United Kingdom 

b AIRBUS Group Innovation, Paris, France 

a r t i c l e i n f o 

Keywords: 

Structural reliability 

Combinatorics 

Non series-parallel systems 

Inclusion–exclusion 

a b s t r a c t 

Reliability of safety-critical systems is a paramount issue in system engineering because in most practical situa- 

tions the reliability of a non series-parallel network system has to be calculated. Some methods for calculating 

reliability use the probability principle of inclusion–exclusion. When dealing with complex networks, this leads to 

very long mathematical expressions which are usually computationally very expensive to calculate. In this paper, 

we provide a new expression to simplify the probability principle of inclusion–exclusion formula for intersections 

of unions which appear when calculating reliability on non series-parallel network systems. This new expression 

exploits the presence of many repeated events and has many fewer terms, which significantly reduces the compu- 

tational cost. We also show that the general form of the probability principle of inclusion–exclusion formula has 

a double exponential complexity, whereas the simplified form has only an exponential complexity with a linear 

exponent. Finally, we compare its computational efficiency against the sum of disjoint products method KDH88 

for a simple artificial example and for a door management system, which is a safety-critical system in aircraft 

engineering. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Reliability of a network system is the probability of the system not 
failing. It is a critical issue in different fields such as computer net- 
works, information networks or gas networks. In particular, reliability 
of safety-critical network systems [19,21] is an important topic in sys- 
tem engineering. For example, aircraft architecture has safety-critical 
network systems such as fly-by-wire, actuation, fire warning and door 
management systems. In most practical situations, the reliability of a 
complex network system (e.g., a system that is not series-parallel) has 
to be calculated exactly [8] . There are several methods to calculate or 
simulate the reliability of a complex system which have been developed 
in recent decades. Some classical static modelling techniques, including 
reliability block diagram models [10] , fault tree models, and binary de- 
cision diagram models, have been widely used to model static systems. 
A general introduction to these methods can be found in [21] . For time- 
dependent systems, modeling techniques such as Markov models [12] , 
dynamic fault tree models [3] and Petri net models [30] have been used. 
Reliability system calculation can also be divided into systems or multi- 
state components, where the components of a system operate in any of 
several intermediate states with various effects on the entire system per- 
formance [14–17,20,25] or with binary-state components, where either 
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a component works perfectly or not at all. In this paper, we consider 
binary-state components. Furthermore, reliability of complex systems 
with specific graph structures, like systems with a hypercube structure 
[11,13] , got attention over the last years. But whereas most of these 
methods consider systems with two-terminal nodes or k -terminal nodes 
where all k -nodes have to be connected, we consider a different type 
of complex systems and a specific structure that has multiple functions 
with multiple start and end nodes. 

In this paper, we propose a new method to calculate the reliability 
of such a complex system with a new way of writing the classic proba- 
bility principle of inclusion–exclusion formula. The classical probability 
principle of inclusion–exclusion formula is 

𝑃 

( 

𝑛 ⋃
𝑖 =1 

𝐴 𝑖 

) 

= 

𝑛 ∑
𝑖 =1 

⎛ ⎜ ⎜ ⎜ ⎝ (−1) 
𝑖 +1 

∑
𝐽⊆{1 , …,𝑛 } , |𝐽 |= 𝑖 

𝑃 

( ⋂
𝑗∈𝐽 

𝐴 𝑗 

) ⎞ ⎟ ⎟ ⎟ ⎠ . (1) 

The new method detects which combination of events leads to the same 
event when simplified and has, therefore, many fewer summands than 
the classical formula for intersections of unions. 

Practical reliability calculations often involve very long expressions 
when the probability principle of inclusion–exclusion formula (1) is 
used. Therefore, there are many approaches in the literature on gen- 
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eral network reliability calculations to simplify the probability princi- 
ple of inclusion–exclusion such as, for example, partitioning techniques 
[6] and the sum of disjoint products method [1,2,7,18,22,29] . The sum 

of disjoint products method is the most often used approach, with recent 
results in [5,23,26–28] . 

All these methods need the exact system structure to simplify the 
reliability calculation. Therefore, in this paper, we propose a new ap- 
proach to simplify the probability principle of inclusion–exclusion with- 
out needing the exact system structure, and to apply it to the calculation 
of the reliability of complex network systems in system engineering. In 
the following, we introduce what kind of complex network systems we 
consider and why we consider a method that does not need the exact 
system structure. 

In system engineering, most network systems have multiple func- 
tions that have to be performed and these are not always independent 
(e.g., they share components). Reliability can be increased if different 
sets of components in the network can perform the same function. There- 
fore, these functions are implemented multiple times in the network 
system through different sets of components, and calculation of the re- 
liability of the network system becomes a very complex task. 

In our paper, we assume that all failure probabilities of the com- 
ponents are known exactly. We do not consider the case when these 
probabilities are known only approximately (e.g., either by estimation 
or a confidence interval). If the different components of the network are 
independent of each other, then we can easily calculate the reliability 
of a set of components. Through this we can calculate the reliability of 
one implementation of a function, which is defined as the probability of 
the event that one implementation of the function does not fail. Finally, 
the probability of an intersection of such events can be calculated easily. 
However, if full independence cannot be assumed, then the calculation 
becomes very expensive, usually prohibitively so. 

Our main motivation lies in dealing with optimization problems with 
reliability constraints where this calculation means that costs for mod- 
els even for very small networks make the problems intractable. The 
main reason for this is the large number of variables and non-linear con- 
straints involved in the reliability calculation within the optimization 
model. Furthermore, the approaches to simplify the probability princi- 
ple of inclusion–exclusion formula mentioned before (e.g., sum of dis- 
joint products) are not suitable for use within an optimization formula- 
tion, because the exact structure of the system has to be known before 
constructing the reliability constraints. Also, approximation and the use 
of lower or upper bounds for the principal of inclusion–exclusion are not 
suitable for exact optimization because they are not in general mono- 
tone increasing or decreasing with regard to the reliability. In practice, 
optimization models that involve reliability are usually either solved 
through heuristics or by assuming series-parallel systems [4,9,24] . 

In this paper, we show how to calculate the reliability of a net- 
work system in which components are not necessarily independent 
in a way that requires considerably fewer operations (and, thus, it is 
much cheaper computationally) than the direct use of the probability 
inclusion–exclusion principle. The key is to exploit the fact that, when 
dealing with a network system, the probability inclusion–exclusion prin- 
ciple has many repeated terms when applied to intersections of unions. 
Furthermore, we compare the computational efficiency and number of 
summands of our new method with the sum of disjoint products method 
KDH88 from [7] . KDH88 is a sum of disjoint products method with 
multiple-variable inversion that can be easily applied to a network sys- 
tem with subsystems that are subgraphs with multiple start and end 
nodes and not just paths with one start and end node. Therefore, it is 
applicable for the complex systems we consider and is suitable to make 
comparisons against. 

The rest of the paper is organised as follows. In Section 2, we pro- 
vide our motivation by showing why it can be expensive to calculate the 
reliability of a non series-parallel system. We also state the main result 
( Proposition 1 ) which provides a formula to calculate the reliability for 
a network system in an exact way with a much lower number of opera- 

Table 1 

Number of summands in the probability principle of inclusion–exclusion formula. 

| | | 𝑖 | Summands 

2 2 15 

2 3 5.11 ×10 2 

2 4 6.55 ×10 4 

3 2 2.55 ×10 2 

3 3 1.34 ×10 8 

3 4 1.84 ×10 17 

4 2 6.55 ×10 4 

4 3 2.41 ×10 24 

5 2 4.29 ×10 9 

5 3 1.41 ×10 73 

tions. To be able to use the formula from Proposition 1 , we provide an 
algorithm in Appendix C which can be easily implemented. In Section 3 , 
we compare our method with KDH88 and the classic probability princi- 
ple of inclusion–exclusion (3) for simple artificial examples and a door 
management system application. Finally, we provide some conclusions 
and discuss future perspectives in Section 4 . 

2. Motivation and main result 

We start by showing that, if independence cannot be assumed, then 
it can be very expensive to calculate the probability of a non series- 
parallel network system with multiple functions and implementations. 
Afterwards, we introduce a result ( Proposition 1 ) that reduces the num- 
ber of calculations involved. Let n be the number of functions in the sys- 
tem and t i be the number of implementations of function i in the system. 
Let 𝐹 𝑖 , 𝑖 ∈ {1 , … , 𝑛 } , be the event that function i of a system does not 
fail in a specific period of time and 𝐹 𝑖𝑗 , 𝑗 ∈ {1 , … , 𝑡 𝑖 } , be the event that 
implementation j of function i does not fail in a specific period of time. 
Let  = { 𝐹 1 , … , 𝐹 𝑛 } be the set of all functions and  𝑖 = { 𝐹 𝑖 1 , … , 𝐹 𝑖𝑡 𝑖 

} be 
the set of all implementations of function i . Furthermore, let R be the 
event that the system does not fail. The reliability of the system, P ( R ), 
is the probability that no function in  fails. A function 𝐹 ∈  does not 
fail if at least one of its implementations does not fail. Therefore, 

𝑃 ( 𝑅 ) = 𝑃 

( 

𝑛 ⋂
𝑖 =1 

𝐹 𝑖 

) 

= 𝑃 

( 

𝑛 ⋂
𝑖 =1 

( 

𝑡 𝑖 ⋃
𝑗=1 

𝐹 𝑖𝑗 

) ) 

. 

Because the different functions and implementations may not be inde- 
pendent, P ( R ) is not easily calculable. In order to work on this expres- 
sion, first we need to establish some notations. Let 

𝑊 = {1 , … , 𝑡 1 } ×⋯ × {1 , … , 𝑡 𝑛 } , and 

𝐵 𝑤 = 

𝑛 ⋂
𝑖 =1 

𝐹 𝑖𝑤 𝑖 
for 𝑤 = ( 𝑤 1 , … , 𝑤 𝑛 ) ∈ 𝑊 , 

where 𝑤 𝑖 ∈ {1 , … , 𝑡 𝑖 } and represents the implementation index of func- 
tion i . We then have that 
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. (2) 

Now the probability principle of inclusion–exclusion can be used and it 
follows that 

𝑃 ( 𝑅 ) = 

|𝑊 |∑
𝑡 =1 

⎛ ⎜ ⎜ ⎜ ⎝ ( −1 ) 
𝑡 +1 ∑

𝐼⊆𝑊 , |𝐼|= 𝑡 
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( ⋂
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𝐵 𝑗 

) ⎞ ⎟ ⎟ ⎟ ⎠ . (3) 

The number of summands in (3) , which is equal to the number of possi- 
ble intersections of B w ’s, is 

∑|𝑊 |
𝑡 =1 

(|𝑊 |
𝑡 

)
= 2 |𝑊 | − 1 with |𝑊 | = 

∏𝑛 
𝑖 =1 | 𝑖 |. 

We therefore have a doubly exponential computational complexity. 
Table 1 shows the number of summands for different values of the num- 
ber of functions and implementations, with the assumption that every 
function has the same number of implementations. 
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