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The accuracy of model-based reliability analysis is affected by the uncertainty regarding the model parameters 

used to predict the behavior of the engineering system. The uncertainty in the model parameters can be reduced 

by combining prior knowledge about the parameters with observed data regarding system inputs and outputs. In 

some cases, the information about the observations is only available as abstracted data, where the original raw 

data have been reduced to a summarized representation. Common forms of abstracted data include summary 

statistics, such as the mean and variance for continuous variables and observed frequencies for discrete variables. 

In the context of reliability analysis, a common form of available information is summarized reliability data for 

various mechanical components (e.g., failure rates or failure probabilities) instead of detailed actual test data. 

This paper presents a methodology for updating the model parameters using these abstracted data forms through 

a Bayesian network. First, the concept of a statistics function is developed and linked to the abstracted data forms. 

The concept of arc reversal is then exploited to transform the Bayesian network to a form that can be used to 

incorporate the statistics function and thereby enable the updating of the model parameters. Several numerical 

examples are used to demonstrate the applicability and generality of the proposed method for several different 

forms of abstracted data. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Decision making in engineering applications based on the results of 
reliability analysis often relies on the use of mathematical or computa- 
tional models to predict the behavior of complex engineering systems. 
Reliability analysis is affected by both aleatory uncertainty (natural vari- 
ability) and epistemic uncertainty lack of knowledge regarding the vari- 
ables or the models). The epistemic uncertainty can further be classified 
into statistical uncertainty and model uncertainty to represent the lack 
of knowledge in variables and models respectively. The model uncer- 
tainty is related to model approximations as well as the uncertainty in 
the model parameters. It is important that the model parameters be cali- 
brated based on the available information so that the model predictions 
accurately reflect the physical reality. This updating process is informed 
by data and requires that all available information be properly incorpo- 
rated into the modeling and simulation. 

The model calibration data may be available in many different forms, 
including but not limited to, experimental and operational data, in- 
spection reports, health monitoring data, engineering plans, rules and 
standards, and expert opinion. These heterogeneous sources of infor- 
mation can lead to significant challenges for model calibration, as the 
data may often be imprecise, uncertain, ambiguous, and/or incomplete. 

∗ Corresponding author. 

E-mail address: sankaran.mahadevan@vanderbilt.edu (S. Mahadevan). 

Additional challenges may arise as the data may not be provided in a 
traditional format, such as point or interval data [1] , but instead may 
be provided in abstracted formats such as sample statistics (e.g. mean, 
variance, median, max, etc.), probability or frequency data, or reliability 
data. 

The term “abstracted data ” in this paper refers to the case where raw 

data has been reduced to a simplified representation of portions or the 
entirety of the raw dataset. There are several sources of abstracted data 
in practical applications [2,3] . For example, instead of receiving the full 
data of all the outcomes of an experiment, sometimes the only informa- 
tion provided from testing may be in the form of summary statistics of 
the observed sample distribution (e.g., mean, variance etc.) or the ob- 
served frequencies for categorical data. In some cases, the performance 
of a population of components or system may be given as reliability data 
[4] or summarized results from acceptance testing [5] , both of which 
can be considered as forms of abstracted data. Sometimes, experts may 
provide their point or interval estimates of moments, frequencies, or 
probability ranges. This calibration process can be further complicated 
if data is provided simultaneously in several of these heterogeneous ab- 
stracted forms. 

The incorporation of abstracted data in inference is not a new con- 
cern. Early work focused on the use of abstracted data for distribution 
parameter estimation of random variables, particularly in cases where 
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the estimation based on the original raw data might be biased due to 
data inconsistencies, such as outliers [6–8] . Additionally, an initial for- 
mulation by Pratt [9] describes the incorporation of summary statistics 
into Bayesian inference. Pratt also conveyed the idea that in certain sit- 
uations, the resulting posterior distribution of the parameter of interest 
closely approximates the posterior distribution that would be obtained 
using the full dataset. Summary statistics with this property are defined 
as Bayesian sufficient statistics [10] . Much of the previous work has 
considered the cases where the raw data was available, but abstracted 
data was used instead to ensure robust inference in the presence of data 
inconsistencies. The focus of these past studies was primarily on the se- 
lection of the most appropriate statistics for the given problem. 

More recent applications of abstracted data in the inference process 
include the identification and use of summary statistics for improving 
computational efficiency as commonly seen in methodologies such as 
the Approximate Bayesian Computation (ABC). ABC methods have been 
explored for a wide variety of applications in Bayesian inference [11–
14] and were developed to circumvent the need to evaluate the likeli- 
hood function which might be analytically intractable or computation- 
ally expensive to evaluate. ABC is a simulation-based approach, where 
model parameters are randomly selected from a prior distribution and 
used to generate a sample dataset. The discrepancy between the simu- 
lated data set and the observed dataset is examined to determine if the 
model parameter values used to generate the simulated dataset should 
be accepted or rejected. The accepted model parameter values are used 
to generate the posterior distribution. For high-dimensional data, the 
probability of selecting appropriate model parameter values that gen- 
erate a simulated dataset matching the observed dataset within a pre- 
scribed tolerance significantly decreases. To improve computational ef- 
ficiency, low-dimensional summary statistics are used in ABC instead of 
the raw data. The main concern in using summary statistics is the loss 
of information associated with condensing the data, which may bias the 
discrimination between two models [15] . A sizeable amount of work in 
ABC has gone into determining the optimal summary statistics to min- 
imize the information loss [16,17] . An area of research that has not 
currently been considered is the application of ABC when only sam- 
ple summary statistics are provided instead of the raw data. However, 
previous efforts have shown that the computations can be particularly 
problematic when the considered statistic is not relevant to the current 
inference problem [18] . 

Another recent approach that has incorporated summary statistics 
into the inference process is maximum relative entropy (MrE). The MrE 
method has been proposed as a generalized framework to unify classi- 
cal Bayesian inference with the concept of Maximum Entropy (MaxEnt) 
[19] . This has been found to be particularly useful in cases where both 
point data and moment data 1 are given [20] . Based on the axioms of 
maximum entropy [21] , the optimal posterior distribution is the one 
that maximizes the relative entropy between the prior and posterior 
distributions. Observation data is incorporated into the inference pro- 
cess through the placement of constraints on the posterior distribution. 
This formulation is beneficial since it allows for the incorporation of any 
form of data that can be written as a constraint on the posterior distri- 
bution. While the advantage of this approach for engineering problems 
has been demonstrated [22] , there is still some debate concerning its 
performance. Particularly, some studies argue that in certain situations, 
the MrE method conflicts with Bayes ’ rule [23,24] and that it can often 
lead to counterintuitive consequences [25] . This is perhaps most appar- 
ent when considering the sequence effects of processing different types 
of information, where the processing of constraints simultaneously vs. 
in different sequential orders could result in different posteriors. An- 
other limitation of the MrE method is that the formulated constraints 
placed on the posterior are hard constraints, meaning that all posterior 

1 Moment data in this case refers to information about the expected values of moments 

of the distribution, and is a form of abstracted data. 

distributions which violate the constraint are ruled out. This can lead to 
difficulties if there is uncertainty in the abstracted data; the incorpora- 
tion of data uncertainty is a challenge that is yet to be fully addressed 
in the MrE method. 

The use of summary statistics in the Bayesian inference process has 
typically been examined as an alternative to using the raw data in order 
to ensure robust inference in the presence of data inconsistencies or to 
reduce the computational effort in inference, and the focus in both these 
cases has been on identifying the appropriate form of the statistics to 
achieve accurate inference results. This paper considers the case where 
only the abstracted data is provided and the raw data is unavailable, 
and we seek to incorporate this form of data in Bayesian inference. 

There are several major challenges when considering the inference 
problem if only abstracted data is provided. These include the potential 
loss of information resulting from the data abstraction resulting in an 
insufficient statistic and the incorporation of the uncertainty associated 
with the probability distribution of the statistic resulting from a random 

sample of limited and potentially unknown sample size. 
Bayesian networks provide a convenient and well-established ap- 

proach for facilitating the inference of unknown or unobservable param- 
eters, utilizing observations of random variables conditional on these 
unknown parameters. Therefore, this paper proposes a novel idea to in- 
corporate “observations ” of abstracted data through a Bayesian network 
representation to enable the Bayesian inference process in the presence 
of abstracted data. The relevant theory is developed from first principles 
and is suitable for practical problems. Since the proposed approach is 
based on a Bayesian network representation, this approach can be easily 
extended beyond the simple inference of distribution parameters of ran- 
dom variables (based on observations of that random variable) to the 
calibration of model parameters in physics models. 

The remainder of the paper is organized as follows. Section 2 re- 
views Bayesian networks and inference. Section 3 proposes the method- 
ology to incorporate abstracted data into the Bayesian network and 
presents a generalized form of Bayesian inference with abstracted data. 
Section 4 illustrates the proposed approach for inferring distribution 
parameters using material yield strength data. Section 5 then demon- 
strates the use of the proposed approach for physics model calibration 
using manufacturing acceptance testing/component reliability data. 
Section 6 provides concluding remarks. 

2. Bayesian networks and inference 

In this section, we first discuss stochastic and deterministic nodes in 
Bayesian networks and discuss how Bayesian methods provide a con- 
venient framework for combining prior beliefs about parameters with 
current evidence gained from data. 

2.1. Bayesian networks 

Bayesian networks provide a convenient framework for graphically 
representing probabilistic relationships among multiple variables. More 
specifically, a Bayesian network is a directed, acyclic graph (DAG) rep- 
resentation of a multivariate distribution, expressing its decomposition 
into a combination of marginal and conditional probabilities. An exam- 
ple of a DAG model is given in Fig. 1 . 

Each node in a Bayesian network denotes a random variable and 
the directed edges between nodes (arcs) are associated with conditional 
probabilities. If there exists a directed edge between two nodes, the up- 
stream node is designated the parent node and the downstream node 
is designated the child node. The dependence between these nodes can 
be described mathematically by a conditional probability distribution. 
Based on the directed Markov condition , a node is independent of its non- 
descendant nodes when conditioned on its parent nodes, therefore the 
Bayesian network can be decomposed into a product of conditional and 
marginal probabilities using the graphical structure and the chain rule 
of probability [26,27] . If the random variables in a Bayesian network are 
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