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a b s t r a c t 

Common-Cause Failures (CCFs) are an important threat to safety critical systems. Most existing CCF models 

assume that the component failure behavior does not vary over time. Such an assumption is often challenged 

in practice due to the influence of various degradation mechanisms, e.g., wear, corrosion, fatigue, etc. In this 

paper, we develop a new model for CCFs considering components degradation. The model is developed in the 

mathematical framework of Stochastic Hybrid Systems (SHS). The CCFs are modeled as random shock processes 

that affect a group of components simultaneously and the components degradation processes are modeled by 

stochastic differential equations derived from physics-of-failures. The benefit of using the SHS model for CCFs 

is that the developed model is analytically solvable. The system reliability can, then, also be solved analytically 

in closed form. The proposed CCF modelling framework is demonstrated by a numerical example of a three- 

unit redundant system and, then, applied to an Auxiliary Feedwater Pump (AFP) system of a Nuclear Power 

Plant (NPP). A comparison to the Binomial Failure Rate (BFR) model of literature shows that by considering the 

components degradation processes, the proposed model can accurately describe the CCF effect on the reliability 

of a system with degrading components. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Common-Cause Failures (CCFs) are simultaneous failures of multiple 

components of a system due to a shared root cause [1] . They are a most 

important threat to the reliability of safety critical systems in various 

industries, e.g., nuclear [2] , oil and gas [3] , aerospace and aviation [4] , 

etc. Due to the shared root cause, redundancies can be defeated. From 

the modelling point of view, the basic events of components failure are 

no longer independent, which makes CCFs modelling a challenging task 

in risk and reliability analysis. In general, models that consider CCFs can 

be derived by breaking down the event of system failure into a series 

of conditional independent basic events of different component groups 

using the law of total probability. Various methods can be used for this, 

e.g., basic probability model [5] , dynamic fault tree [6–11] , Bayesian 

network [12–15] , etc. 

According to [2] , existing CCF models can be broadly classified into 

two categories: non-shock models (statistical models) and shock mod- 

els (mechanistic models). Non-shock models do not consider the actual 

process which leads to the CCFs. Rather, the models are constructed by 

directly estimating the probability of CCF events using statistical data 
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related to these events [2] . Typical non-shock models include the Beta 

Factor (BF) model [16] , the Alpha Factor (AF) model [17] , the Multi- 

ple Greek Letter (MGL) model [18] , etc. Since statistical data for CCF 

events, especially for higher order CCF events, are generally rare, pa- 

rameter estimation becomes a challenging problem in practice [19] . 

As advocated in Zio et al. [20,21] , reliability modelling in general, 

and CCF modelling in particular, can be greatly advanced by integrating 

the large body of Knowledge, Information and Data (KID) that is contin- 

uously becoming available on the processes of failure and degradation 

of components and systems. A typical example of such integration is the 

use of shock models to explicitly model the actual process leading to 

CCFs: when a CCF shock arrives, simultaneous component failures may 

occur [2] . Compared to the non-shock models, the shock models attempt 

to integrate additional knowledge on the CCF failure process, explicitly 

modelling it as random shocks. A typical example of shock models is 

the Binomial Failure Rate (BFR) model, used for example in the nuclear 

industry [22] . First proposed by Vesely [23] , the BFR model assumes 

that when a CCF shock (non-lethal shock) arrives, the components may 

fail with some failure probability. Then, the failure probability related 
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Acronyms 

AFP Auxiliary feedwater pump 

BFR Binomial failure rate 

CCF Common-cause failure 

CCCG Common cause component group 

FT Fault tree 

FOSM First order second moment 

HPP Homogeneous Poisson process 

KID Knowledge, information and data 

MC Monte Carlo 

MLE Maximum likelihood estimation 

NPP Nuclear power plant 

PDF Probability density function 

SHS Stochastic hybrid systems 

SDE Stochastic differential equation 

TTF Time-to-failure 

Notation 

q The discrete state of the system 

x The continuous state of the system 

𝜆 The intensity of the Poisson process 

𝜙 The reset map 

𝜓 The test function 

H The threshold of the component degradation process 

w t The standard Wiener process 

Y The Boolean state variable 

l The number of degrading components in the system 

n The number of the discrete states of the SHS 

O ( · ) The “big Oh ” notation used to describe the complexity 

of algorithms 

to the CCF event can be calculated from a binomial distribution. Atwood 

et al. [22] generalized the model to consider both lethal shocks and non- 

lethal shocks, where lethal shocks cause the simultaneous failure of all 

the components in a Common Cause Component Group (CCCG). Haupt- 

manns [24] developed a Multi-Class Binomial Failure Rate (MCBFR) 

model as an extension to the original BFR model, where the CCFs are 

divided into different technical classes with different coupling factors. 

Kvam [25] extended the BFR model to consider multiple shock sources, 

assuming that the probability of random shocks follow a beta distribu- 

tion. Nonparametric maximum likelihood estimation of the BFR model 

parameters were discussed in Kvam [26] . Berg et al. [27] developed a 

Process-Oriented Simulation (POS) model as a simulation-based exten- 

sion to the original BFR model. Differently from the BFR model, the POS 

model distinguishes immediate failures and delayed failures of the com- 

ponents affected by a common cause event, and assigns probabilities to 

different degrees of effects of a common cause event on the components. 

Atwood and Kelly [28] developed a Bayesian inference method for the 

BFR model. 

Apart from the BFR model, other widely applied CCF shock models 

include the Stochastic Reliability Analysis (SRA) model [29] , the Gen- 

eral Multiple Failure Rate (GMFR) model [30] and the Common Load 

Model (CLM) [19] . The SRA model was developed by Dorre [29] to con- 

sider the uncertainty in the probability of the CCF events, given the ar- 

rival of the shock. A similar model was developed in Hughes [31] where 

the distribution of the CCF probabilities is modeled as a weighted av- 

erage of the corresponding conditional probability under different en- 

vironment conditions. The GMFR model was developed in [30] for CCF 

events that result from random shock processes with independent rates. 

Vaurio et al. applied the GMFR model to investigate the unavailability of 

redundant standby systems [32] and m-out-of-n: G systems [33] under 

different test strategies, respectively. In the CLM [34] , the common load 

shared by a group of components is regarded as the “root cause ” of the 

CCFs and the reliability is estimated using the stress-strength interfer- 

ence model [19] . Based on the CLM, Mankamo and Kosonen [35] pro- 

posed an Extended Common Load Model (ECLM) for CCF modelling 

of highly redundant systems. Xie [19] developed a Knowledge-Based 

Multi-dimension Discrete (KBMD) CCF model and related parameter es- 

timation method. Failure data from similar CLMs are used in [36] for 

the CCF probability assessment based on a data mapping approach. 

In the existing CCF shock models reviewed above, the effect of the 

shock on the CCF event is assumed to be independent of time. In prac- 

tice, however, degradation mechanisms might affect the components 

behavior to failure, e.g., wear, fatigue, corrosion, etc. [37] . The com- 

ponents degradation processes are not fully considered in the existing 

CCF shock models. To this regard, we develop a new model to con- 

sider both components degradation and CCFs, which further extends 

the knowledge base of the CCF models by integrating physics-of-failure 

degradation models. The model is developed based on a mathemati- 

cal framework, called Stochastic Hybrid Systems (SHS), which is used 

for modelling and analyzing dynamic stochastic systems involving both 

discrete and continuous states [38] . By solving a set of differential equa- 

tions generated by Dynkin’s formula [39] , the probability distribution 

of the discrete states, as well as the conditional moments of the contin- 

uous states under each discrete state can be derived [40] . Typical ap- 

plications of SHS include modelling of networked control systems [41] , 

Markov reward models [39] , dynamic power systems [42] , dependent 

failure processes [43] , etc. However, to the best of our knowledge, the 

present work represents the first attempt to use SHS for modelling CCFs. 

The developed model contributes to the existing scientific literature 

in two aspects: 

• a new SHS-based model for CCFs is developed, which allows consid- 

ering components degradation; 
• a closed-form expression for system reliability is derived based on 

the SHS model. 

The remainder of this paper is organized as follows. 

Section 2 presents the developed SHS model for CCFs of degrad- 

ing components. The SHS model is demonstrated using a numerical 

example ( Section 3 ), and then, applied on an Auxiliary Feedwater 

Pump (AFP) system of a Nuclear Power Plant (NPP) ( Section 4 ). 

Section 5 concludes this paper. 

2. The SHS model of CCFs of degrading components 

In this section, we present the SHS model of CCFs, considering 

components degradation. First, SHS modelling is briefly introduced in 

Section 2.1 . In Section 2.2 , we describe the SHS model of CCFs of degrad- 

ing components. Conditional moments of the state variables are derived 

in Section 2.3 . System reliability is, then, estimated based on the con- 

ditional moments in Section 2.4 . In Section 2.5 , estimation of the SHS 

model parameters is discussed. 

2.1. SHS modelling 

The state space of an SHS is a combination of discrete and continuous 

states. Let us denote the discrete states by q ( t ), q ( t ) ∈Q , where Q is a 

finite set containing all the possible discrete modes of the system. The 

continuous states are denoted by 𝑥 ( 𝑡 ) , 𝑥 ( 𝑡 ) ∈ ℝ 

𝑙 . An SHS is defined based 

on the following assumptions [38,40,44] : 

(1) The evolution of the continuous states is governed by a set of 

Stochastic Differential Equations (SDEs): 

𝑑 𝑥 ( 𝑡 ) = 𝑓 ( 𝑞 ( 𝑡 ) , 𝑥 ( 𝑡 ) ) 𝑑 𝑡 + 𝑔 ( 𝑞 ( 𝑡 ) , 𝑥 ( 𝑡 ) ) 𝑑 𝑤 𝑡 , (1) 

where 𝑤 𝑡 ∶ ℝ 

+ → ℝ 

𝑘 is a k -dimensional Wiener process; 𝑓 ∶ 𝑄 ×
ℝ 

𝑙 → ℝ 

𝑙 defines the evolution of the continuous state and 𝑔 ∶ 𝑄 ×
ℝ 

𝑙 → ℝ 

𝑙×𝑘 determines the coefficients of the Wiener process. 

(2) At any time t , if the system is in state ( q ( t ), x ( t )), it undergoes a 

transition with a rate 𝜆𝑖𝑗 ( 𝑞( 𝑡 ) , 𝑥 ( 𝑡 ) ) ∶ 𝑄 ×ℝ 

𝑙 → ℝ 

+ , i, j ∈Q . That is, 
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