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a b s t r a c t 

This contribution presents a framework for calculating a sensitivity measure for problems of computational 

stochastic mechanics. More specifically, the sensitivity measure considered is the derivative of the failure proba- 

bility with respect to parameters of the probability distributions (e.g. mean value, standard deviation) associated 

with the random input quantities of a system ’s model. The proposed framework is formulated as a post-processing 

step of Line Sampling, which is a simulation-based method for estimating small failure probabilities. In particular, 

the proposed framework comprises two different approaches for estimating the sought sensitivity. The applica- 

tion of the proposed framework and comparison of the two aforementioned approaches is discussed through a 

number of numerical examples. The results obtained indicate that both approaches allow estimating the sought 

sensitivity measure. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The application of probability theory has been widely accepted as a 
means for quantifying the unavoidable effects of uncertainty on the per- 
formance of mechanical and structural systems [54] . Thus, the safety of 
a system can be measured in terms of, e.g. a failure probability. It should 
be noted that the failure probability can be highly sensitive to the char- 
acterization of the uncertainty in the input variables of a system. That 
is, the failure probability may vary considerably in case the numerical 
value of a distribution parameter (such as mean value or standard de- 
viation) varies [7,9,39] . Undoubtedly, evaluating the sensitivity of the 
probability with respect to such parameters is of paramount importance. 
For example, it can allow pinpointing the most influential parameters 
of a model [26,29] or perform reliability-based optimization [2,63] . In 
this context, the objective of this contribution is proposing a framework 
for evaluating the sensitivity of the failure probability. The sensitivity 
measure considered herein is the derivative of the failure probability 
with respect to distribution parameters that describe the uncertainty in 
the input variables of a model. 

Most of the approaches for probability sensitivity estimation with re- 
spect to distribution parameters developed so far have been formulated 
as a post-processing step of an existing strategy for estimating failure 
probabilities. For example, the estimation of probability sensitivity ap- 
plying the First- and Second-Order Reliability Methods [17] has been 
addressed in, e.g. [8,19,20,33] . In these contributions, the sensitivity 
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analysis is closely linked with the gradient of the so-called design point 
[17] with respect to the distribution parameters. The estimation of the 
probability sensitivity applying simulation methods such as Monte Carlo 
[44] , Importance Sampling [42,57] and Subset Simulation (which was 
originally introduced in [5] and further extended in [3,65] ) has also 
been addressed in, e.g. [29,30,43,58,62] . A common feature found in 
the latter contributions is that the samples generated for estimating the 
probability are post-processed in order to obtain the sensitivity esti- 
mates, thus requiring no additional system (structural) analyses. 

The framework for probability sensitivity estimation proposed in this 
contribution follows a similar scheme when compared to the approaches 
described above. In particular, the proposed framework is developed as 
a post-processing of Line Sampling (LS), which is a simulation method 
introduced in [34] and further extended in [14,15] . It should be noted 
that LS produces accurate probability estimates for problems which in- 
volve a linear, weakly nonlinear or even mildly nonlinear behavior while 
exhibiting high efficiency when compared to other simulation strategies 
[52] . The main idea behind LS is estimating the failure probability by 
assessing the response of the system along lines (which are generated 
randomly in the space of the uncertain input variables). The proposed 
framework for probability sensitivity estimation is implemented consid- 
ering two different approaches. The first approach involves calculating 
the gradient of the function describing the performance of the system at 
a specific point for each of the lines associated with LS. The second ap- 
proach involves the estimation of a one-dimensional integral along each 
of the lines generated when applying LS. Although the two approaches 
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are conceptually different, they produce similar sensitivity estimates. 
The performance of both approaches is discussed using several numeri- 
cal examples. 

It is important to note that the application of LS for probability sen- 
sitivity estimation has already been explored in [37,47] . However, the 
work reported herein possesses substantial differences when compared 
with those contributions. First, the objective of the current work is es- 
timating probability sensitivity with respect to distribution parameters 
while [47] focuses on estimating sensitivity with respect to determinis- 
tic parameters of the model. Second, the results obtained in the current 
work generalize the results on sensitivity analysis along each line asso- 
ciated with LS which were presented in [37] . Third, the contributions 
[37,47] are developed following the first approach of the framework re- 
ported herein, while the second approach has not been explored as yet 
in context with LS. 

The range of application of the proposed approach for probability 
sensitivity estimation based on LS is similar to that of LS applied for 
probability estimation, i.e. reliability problems that involve weakly to 
mildly nonlinear behavior. In fact, in such class of problems, LS may 
exhibit a high numerical efficiency when compared to other approaches 
for probability estimation, as discussed in [55] . While the proposed ap- 
proach is also applicable to more general reliability problems, it is ex- 
pected that its efficiency can decrease. Thus, on one hand, for problems 
that exhibit a highly nonlinear behavior, the application of Subset Sim- 
ulation can provide a more efficient means for estimating probability 
sensitivity, as discussed in [30,58] . On the other hand, for those prob- 
lems that exhibit a linear or close to linear behavior, the application of 
the First Order Reliability method may be appropriate [8,19,20,33] . 

This paper is organized as follows. The formulation of the problem 

studied in this paper (i.e. sensitivity of the failure probability) is pre- 
sented in Section 2 . Section 3 contains a brief overview on Line Sampling 
(LS). Two approaches for estimating probability sensitivity applying LS 
are presented in Sections 4 and 5 , respectively. These two approaches 
are compared in Section 6 while its application to a number of examples 
is investigated in Section 7 . The contribution closes with some conclu- 
sions and outlook in Section 8 . 

2. Formulation of the problem 

2.1. Failure probability 

Assume that a computational model of a mechanical or structural 
system of interest is available, which has been generated using an ap- 
propriate technique such as, e.g. the finite element method [6] . A total 
of n input variables of this model are uncertain and are characterized 
as random variables 𝑋 𝑖 , 𝑖 = 1 , … , 𝑛 . The physical values that these in- 
put variables may assume are denoted as 𝑥 𝑖 , 𝑖 = 1 , … , 𝑛 . For the sake of 
simplicity and without loss of generality, it is assumed in the remaining 
part of this contribution that these random variables are independent. 
However, possible dependencies between these random variables could 
be accounted for considering appropriate models, see e.g. [36,45] . The 
probability density function (pdf) associated with each input random 

variable is denoted as 𝑓 𝑋 𝑖 ( 𝑥 𝑖 |𝜽𝑖 ) , where 𝜽i is a vector that collects the 
distribution parameters of X i such as mean, standard deviation, etc. The 
joint pdf is denoted as f X ( x | 𝜽), where 𝒙 = [ 𝑥 1 , … , 𝑥 𝑛 ] 𝑇 , 𝜽 = [ 𝜽𝑇 

1 , … , 𝜽𝑇 
𝑛 
] 𝑇 

and (·) T represents transpose. Due to the independence between random 

variables, it is evident that 𝑓 𝑿 ( 𝒙 |𝜽) = 

∏𝑛 

𝑖 =1 𝑓 𝑋 𝑖 ( 𝑥 𝑖 |𝜽𝑖 ) . 
As some of the input variables of the model are random, the response 

of the model is random as well. Moreover, some particular realizations of 
the input variables may lead to an undesirable response of the system, 
such as loss of serviceability or structural collapse. The chances that 
such undesirable response occur can be measured in terms of a failure 
probability. 

𝑝 𝐹 = ∫𝑔 𝒙 ( 𝒙 ) ≤ 0 
𝑓 𝑿 ( 𝒙 |𝜽) 𝑑 𝒙 (1) 

In the above equation, p F denotes failure probability and g x ( x ) is the 
so-called performance function [11,17] , which assumes a value equal or 
smaller than zero whenever a realization x of the random input variables 
causes an undesirable structural response. Throughout this work, it is 
assumed that the performance function is differentiable with respect to 
x . 

The numerical evaluation of the failure probability integral is usually 
a challenging task. This stems from two issues. First, the number of ran- 
dom variables involved in a problem may be large, thus precluding the 
application of numerical quadrature. Second, for most cases of practical 
interest, the performance function g x ( x ) is not known analytically. In 
fact, its evaluation must be performed often in a point-wise manner for 
particular values of x , which implies performing a deterministic system 

(structural) analysis. The two aforementioned issues favor the applica- 
tion of approximate methods (such as the First- and Second-order Reli- 
ability Methods [17] ) and simulation techniques (such as Monte Carlo 
and its more advance variants [4] ) for evaluating the failure probability. 

2.2. Sensitivity of failure probability 

The structure of Eq. (1) indicates that the value of the failure proba- 
bility is affected by the vector 𝜽 that groups the distribution parameters. 
A possible means for quantifying the sensitivity of the failure probability 
with respect to these distribution parameters is calculating the partial 
derivative of p F with respect to each entry in 𝜽 [62] , i.e.: 

𝜕𝑝 𝐹 

𝜕𝜃𝑙,𝑖 
= ∫𝑔 𝒙 ( 𝒙 ) ≤ 0 

ℎ 𝑥 𝑖 ,𝜃𝑙,𝑖 
( 𝑥 𝑖 |𝜽𝑖 ) 𝑓 𝑿 ( 𝒙 |𝜽) 𝑑 𝒙 , 𝑙 = 1 , … , 𝑛 𝑖 , 𝑖 = 1 , … , 𝑛 (2) 

where 𝜃l,i represents the l th distribution parameter associated with the 
i th random variable, n i is the number of distribution parameters asso- 
ciated with the i th random variable and ℎ 𝑥 𝑖 ,𝜃𝑙,𝑖 ( 𝑥 𝑖 |𝜽𝑖 ) is the following 
function. 

ℎ 𝑥 𝑖 ,𝜃𝑙,𝑖 
( 𝑥 𝑖 |𝜽𝑖 ) = 

1 
𝑓 𝑋 𝑖 

( 𝑥 𝑖 |𝜽𝑖 ) 
𝜕𝑓 𝑋 𝑖 

( 𝑥 𝑖 |𝜽𝑖 ) 
𝜕𝜃𝑙,𝑖 

(3) 

The challenges associated with the calculation of the partial derivative 
of the probability in Eq. (2) are – in principle– similar to those associated 
with the failure probability integral in Eq. (1) . 

2.3. Transformation into standard normal space 

A common practice in structural reliability is expressing the failure 
probability integral in the standard normal space. Thus, each of the in- 
put random variables of the model (which are denoted as physical ran- 
dom variables) is mapped into a standard normal random variable. In 
view of the assumption of independence between physical random vari- 
ables, such projection is performed by equating the cumulative density 
function associated with the i th physical random variable with the cu- 
mulative density function of the i th standard normal random variable 
[16] . That is, 𝐹 𝑋 𝑖 ( 𝑥 𝑖 |𝜽𝑖 ) = Φ( 𝑧 𝑖 ) , where 𝐹 𝑋 𝑖 ( ⋅) and Φ(·) are the cumulative 
distribution functions of the physical random variable X i and standard 
normal random variable Z i , respectively. In this way, it is possible to de- 
fine a transformation function such that 𝑧 𝑖 = 𝑡 𝑖 ( 𝑥 𝑖 |𝜽𝑖 ) , 𝑖 = 1 , … , 𝑛, where 

𝑡 𝑖 ( 𝑥 𝑖 |𝜽𝑖 ) = Φ−1 
(
𝐹 𝑋 𝑖 

(
𝑥 𝑖 |𝜽𝑖 

))
and Φ( ⋅) −1 represents the standard normal 

inverse cumulative distribution function. The collection of the n trans- 
formation functions (which is actually a vector-valued function) is de- 
noted as 𝒛 = 𝒕 ( 𝒙 |𝜽) . 

In view of the definitions discussed above and applying a change of 
variables, Eqs. (1) and (2) can be recast in the standard normal space 
as: 

𝑝 𝐹 = ∫𝑔 𝒛 ( 𝒛 |𝜽) ≤ 0 𝜙𝑛 ( 𝒛 ) 𝑑 𝒛 (4) 

𝜕𝑝 𝐹 

𝜕𝜃𝑙,𝑖 
= ∫𝑔 𝒛 ( 𝒛 |𝜽) ≤ 0 ℎ 𝑧 𝑖 ,𝜃𝑙,𝑖 ( 𝑧 𝑖 |𝜽𝑖 ) 𝜙𝑛 ( 𝒛 ) 𝑑 𝒛 (5) 
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