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a b s t r a c t 

This paper proposes a complete sensitivity analysis of the use of Autoregressive models (AR) and Mahalanobis 

Squared Distance in the field of Structural Health Monitoring (SHM). Autoregressive models come from econo- 

metrics and their use for modelling the response of a physical system has been well established in the last twenty 

years. However, their aware application in engineering should be supported by knowledge about how they de- 

scribe phenomena which are well defined by physics. Since autoregressive models are estimated by a least square 

minimization, statistical tools like Global Sensitivity Analysis and uncertainty propagation are powerful methods 

to investigate the performance of AR models applied to SHM. 

These methodologies allow one to understand the role of the uncertainty and uncorrelated noise by a rigorous 

approach based on statistical motivations. Moreover, it is possible to quantify the link between the mechanical 

properties of a system and the AR parameters, as well as the Mahalanobis Squared Distance. By fixing a factor 

prioritization among the variables of a AR model, it is possible to understand which are the parameters playing 

a main role in damage detection and which type of structural changes is possible to efficiently detect. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The importance of improving the understanding of the performance 
of structures over their lifetime with information obtained from Struc- 
tural Health Monitoring (SHM) has been widely documented. The as- 
sessment of structural reliability is strictly connected to the quality of 
information provided by a damage detection process [1–6] . The diag- 
nosis of in-service structures on a continuous real-time basis is of pri- 
mary importance for aerospace, civil and mechanical engineering. The 
advantages of Structural Health Monitoring (SHM) are optimal use of 
a structure, reduced downtime and avoidance of catastrophic failures, 
moreover it can drastically change the planning of maintenance service 
with several economic benefits [7] . There are many potentially useful 
techniques to achieve these aims, and their applicability to a specific 
situation depends on the size of the acceptable critical damage for a 
structure. 

As mentioned in the given reference, the problem of damage detec- 
tion has a hierarchical structure. At the lowest level, it is required to 
recognize damage has occurred or not. At the highest level, damage lo- 
cation and size must be identified for a proper estimation of the residual 
structure life. One of the most promising approaches to damage identi- 
fication is based on pattern recognition [8] . Data are measured from a 
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structure and converted, by a process of feature extraction, into a rep- 
resentation where variations due to damage are highlighted. 

Vibration based methods have been widely used for identification 
of various types of damages for several real and laboratory structures. 
The methods relying on vibration response -also known as Output-Only 
methods –represent an important category within the vibration based 
methods for Structural Health Monitoring (SHM). Their use is highly 
important for in-service structures such as bridges, aircrafts, naval ve- 
hicles and others, where the excitation signal is not available. 

In the last twenty years, the scientific community focused its atten- 
tion on exploitation of different types of autoregressive models and fea- 
tures for SHM. In [9] Sohn et al. studied AR models and features based on 
analysis of residuals (X-Chart, S-Chart, EWMA). In [10] Carden et al. ap- 
plied the more complex ARMA models to SHM application; the approach 
has been validated with experimental data taken from Z24 bridge. Sohn 

et al. in [11] proposed a linearized version of ARMA, the AR-ARX model. 
The applicability of this approach has been demonstrated with an ex- 
perimental setup based on an eight degree of freedom mass-spring sys- 
tem. Features based on residuals often assume a Gaussian distribution 
of sample data sets. This assumption might be misleading, making SHM 

algorithms less efficient. Worden et al. in [12] tried to overcome this 
problem proposing a more sophisticated data processing called sequen- 

tial probability ratio test (SPRT), which relies on the analysis of extreme 
value statistics. In [13] Yao et al. proposed a comparison between sev- 
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Nomenclature 

𝑋 𝑡 , 𝑋 𝑡 −1 , 𝑋 0 Signal sample at time 𝑡, 𝑡 − 1 , 0 
𝜙1 Autoregressive parameter of AR(1) model 
a t Residual between model prediction and signal out- 

put at time t 
q Order of the AR(q) model 
D m 

Mahalanobis square distance 
[ 𝜙] qxp Matrix of Autoregressive reference dataset. p 

is the number of set acquired 
𝜙i Generic i-th AR parameter of the model 
{ 𝜙𝜇} qx 1 Vector of the means of the Autoregressive ref- 

erence datase 
[ S ] qxq Covariance Matrix of the Autoregressive ref- 

erence dataset 
{ ̂𝜙 } qx 1 Vector of the Autoregressive parameters as- 

sumed for the outlier analysis 
Y General output quantity 
X i General i-th input quantity 
V ( Y ) Total variance of the Y output 
V ( E ( Y | X i )) Conditional variance of the Y output with respect 

X i input 
V ( E ( Y | X ∼ i )) Conditional variance of the Y output with respect 

all inputs except X i 

𝑆 𝑋 𝑖 
First order global sensitivity index 

𝑆 𝑋 𝑖 , 𝑋 𝑗 
Second order global sensitivity index 

𝑆 𝑇 𝑖 
Total sensitivity index 

[ M ], [ D ], [ K ] Mass matrix, damping matrix, stiffness matrix of a 
generic mechanical system 

m, h, k Mass, damping ratio and stiffness of 1 d.o.f. me- 
chanicals system 

𝜎u Standard deviation of Gaussian white noise excita- 
tion 

U ( ∼ ) Uniform distribution 

eral pattern recognition algorithms using autoregressive models. More- 
over, they introduced a new feature extraction technique, called Cosh 

spectral distance (COSH) and validated it with several experimental data. 
Among all the possible strategies for time series modelling, the use 

of pure AR models is very common. Basically, because the identification 
of the model is made by a simple least squared minimisation, which re- 
quires few computing efforts to be performed, and the uncertainty of the 
model is usually low. However, pure AR models are only-pole functions 
and can represent the response of complex systems just by an approxi- 
mation. The consequences are spurious poles that must be introduced in 
the model in order to follow the response of the mechanical system, al- 
though it depends also on the zeros of the frequency response function of 
the physical model [14] . The popular application of AR models to SHM 

relies on their reliable identification of the mechanical properties of a 
system; however, the main property that should be taken into account, 
in a SHM context, is their sensitivity to a change of the system they are 
representing. Since AR models are made by physical and spurious poles, 
their sensitivity is not a trivial issue. The AR parameters of a model are 
usually used all together to assess the healthy status of a system, for in- 
stance computing a Mahalanobis Square Distance. However, as it will be 
shown, only few of them are strongly linked to the physical properties 
of the system; so that, their behaviour is not strictly depending on the 
physical response they are modelling and to its changes. 

Scientific literature lacks examples for the explicit propagation of 
measurement uncertainty and Global Sensitivity Analysis for damage 
detection algorithms. Yao et al. in [14] proposed a formulation for the 
sensitivity of Mahalanobis Squared Distance and COSH distance with re- 
spect to both stiffness reduction and measurement noise level. However, 
the analysis is based only on an analytical study of the issue in place of 

a statistical framework. In that work, simulation results and theoretical 
analysis show some differences due to the approximation adopted for 
the extrapolation of the sensitivity expression. In [15] Roy et al. pro- 
vided a mathematical formulation to establish the relation between the 
change in an ARX model coefficients and the normalized stiffness of a 
structure. The reason behind the choice of ARX model in place of a stan- 
dard AR model is the coefficients of the ARX model can have a direct 
correlation with structural stiffness. Such a correlation is however not 
established for standard AR model. 

This work focuses on an accurate analysis of the uncertainty related 
to vibration-based method. Specifically, it focuses on the use of pure au- 
toregressive models and Mahalanobis Squared Distance, among the most 
widely adopted approaches in vibration-based methods. Generally, this 
approach could be extended to any kind of damage feature to quantify 
its sensitivity to the changes of a system. 

The contribution of this paper is the attempt of covering the lack 
of uncertainty assessment in the SHM literature, performing an Uncer- 
tainty Propagation Analysis (UP) and a Global Sensitivity Analysis (GSA) 
of AR models and Mahalanobis Squared Distance. As it will be proved, 
a rigorous analysis will demonstrate that pure AR models may hide 
some weaknesses that could have strong consequences on their feasi- 
bility to SHM. This paper will give some guidelines about the variables 
that strongly affect the performance of AR models for damage detection 
and about the type of structural changes that might be detected with 
confidence. The conclusion will be fundamental to those who want to 
use AR models as tools to get information to predict the safety of aging 
structures over their service life. 

The paper is structured as follows. In Section 2 the background the- 
ory of Autoregressive models and Mahalanobis Squared Distance are 
briefly exposed, in the context of damage detection. The Analysis of 
Variance is introduced in Section 3 . The design of the simulation is dis- 
cussed in Section 4 . Finally, the results of the Analysis of Variance of 
the AR model and Mahalanobis Squared Distance applied to damage 
detection are presented and commented in Section 5 . 

2. Autoregressive models 

In the next paragraphs, the background theory of AR models and 
Mahalanobis Squared Distance is briefly introduced, putting them in the 
context of dynamic system identification. The reader is asked to refer to 
a complete background theory provided by the following reference [16] . 

2.1. Description of a system response function by autoregressive models 

Autoregressive models were developed in econometrics as a repre- 
sentation of time-varying processes, in which the output variable de- 
pends linearly on its own previous values and on a stochastic term. 
Nowadays they are used in a wide variety of different fields, for instance 
Structural Health Monitoring (SHM). Autoregressive models can be im- 
plemented to represent the dynamic response of structures. Through 
these models, it is possible to describe a time series with a lower number 
of data, which are the parameters of the AR model. 

To introduce autoregressive models, let us consider a linear mechan- 
ical system. Let us call u ( t ) the input of a system and x ( t ) the output. 
Usually the input could be either a deterministic variable or a stochastic 
one. In a civil or mechanical structure, which works under operational 
conditions, the excitation can be described as a random force. Under 
some strong assumptions [17] , operational modal analysis considers the 
random force as a Gaussian process. In a real case, these assumptions 
are quite well respected if the data are averaged over a long enough 
time window. Therefore, under this condition, 𝑢 ( 𝑡 ) ∼ 𝑁 𝐼 𝐷( 0 , 𝜎2 

𝑢 
) . 

Now it is possible to recall the link between a generic dynamic sys- 
tem and an AR model. For sake of simplicity, let us start with the au- 
toregressive model of the first order AR (1), which represents a dynamic 
response of the first order in the discrete time domain: 

𝑿 𝒕 = 𝝓1 𝑿 𝒕 −1 + 𝒂 𝒕 (1) 
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