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a b s t r a c t

Multi-state system (MSS) reliability modeling is a paradigm that allows both systems and components to
exhibit more than two performance levels. While several researchers have introduced correlation or
dependence into MSS models to assess its negative influence on performance and associated measures,
these methods exhibit complexity that is exponential or worse in the worst case. To overcome this
limitation, this paper proposes an extension to the discrete universal generating function approach for
MSS to allow correlation between the elements comprising a multi-state component. We subsequently
generalize to the continuous case and allow failures to follow any life distribution. The approach pos-
sesses an analytical form and therefore enables efficient performance and reliability assessment as well
as sensitivity analysis on the impact of correlation. This sensitivity analysis can be applied to a wide range
of measures including performance, reliability, the density function, hazard rate, mean time to failure,
availability, and mean residual life. The approach is illustrated through a series of examples, demon-
strating the efficiency of the approach to assess performance and reliability as well as to conduct sen-
sitivity analysis. The results indicate that the approach can identify the impact of correlation on per-
formance, reliability, and the many measures of interest.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-state system performance and reliability analysis [1] has
received substantial attention very recently [2–5] as a valuable
generalization of traditional binary state reliability models of
component-based systems. The MSS paradigm can model systems
composed of components that exhibit three or more levels of
performance and are therefore suitable for modeling modern
systems such as scientific workflows in a cloud computing envir-
onment [6,7], where the size and the availability of server farms
determine the performance of a computation. Similar to binary
state systems, MSS are also susceptible to various forms of
dependent and correlated failures, where failures of the elements
comprising an MSS component1 experience simultaneous or

cascading failure. These dependent and correlated failures can
have several negative impacts, including lower performance,
reliability, and earlier mean time to failure (MTTF), necessitating
that reliability engineering managers take steps to mitigate the
possibility of these negative consequences. The vast majority of
MSS research that consider dependence utilizes methods such as
common cause failure (CCF) [8] and Markov modeling [9]. How-
ever, the CCF approach introduces an exponential number of
parameters in the worst case, while the Markov method suffers
from the state space explosion problem. Thus, simpler analytical
methods to efficiently model and assess the impact of correlated
failures on the performance and reliability of MSS could further
enhance the applicability of the MSS paradigm to modern systems.

One of the earliest works on multi-state systems is that of
Barlow and Wu [10] who defined a system state function for
coherent systems with multi-state components and investigated
its properties. A recent survey of multi-state system reliability
modeling and evaluation by Yingkuia et al. [11] notes that virtually
all MSS methods are relatively straightforward extensions of bin-
ary state methods, including the assignment of Boolean variables
to each MSS component state [12] enabling reduction to a binary
system, stochastic processes [13–15], the universal generating
function(UGF) [16], Monte-Carlo simulation [17–19], and recursive
algorithms [20,21]. Yingkuia et al. [11] also note that many or all of
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Abbreviations: CCF, common cause failure; MTTF, mean time to failure; MTTR,
mean time to repair; MRI, mean residual life; MSS, multi-state system; p, parallel
system; s, series system; UGF, universal generating function
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Elements are internal to MSS components. Reliable elements determine the per-
formance of an MSS component. Since components considered in this paper are
multi-state, MSS is often omitted before the word component for brevity.
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the papers they surveyed assume component failures are
independent.

Multi-state system reliability models considering correlation
include the work of Veeraraghavan et al. [22] who proposed a
combinatorial algorithm to assess the performance and reliability
of a coherent repairable system composed of multi-state compo-
nents, which allows interdependent component state transitions
within a system where each component can exhibit a different
number of performance levels. Zang et al. [23] developed a
method based on binary decision diagrams where boolean vari-
ables represent the state of components and a series of multi-state
fault trees represent the multi-state system. Trivedi et al. [24]
presented multi-state availability models using three analytic
techniques: (1) continuous time Markov chains, (2) stochastic
reward nets, and (3) multi-state fault trees and performed a
comparative performance analysis of a system where component
failures can be statistically dependent.

A large body of work on MSS utilizes the common cause failure
[8], including Levitin [25] who extended the UGF approach to
include common cause failures [8], while in Ref. [26], he used
common cause failures to characterize statistical dependence
among failures of components with multiple levels of protection.
Korczaka et al. [27] modeled the survivability of series–parallel
MSS with multiple levels of protection through a composition of
Boolean and UGF techniques. Levitin et al. [28] presented an
algorithm to evaluate the performance distribution of series–par-
allel MSS where CCF are caused by the propagation of failures
among system elements. Levitin et al. [29,30] also modified the
reliability block diagram (RBD) method to evaluate the reliability
and performance measures of multi-state series–parallel systems
with performance-dependent fault coverage. They also introduced
a new model of fault level coverage for MSS, where the effec-
tiveness of recovery mechanisms depends on the coexistence of
multiple faults in related elements. In Ref. [31], Levitin et al. con-
sidered the performance evaluation of series–parallel MSS with
propagated failures and imperfect protections. Xing and Levitin
[32] proposed a separable and combinatorial methodology for the
reliability analysis of MSS subject to propagated failure with global
effect and failure isolation according to functional dependence.

Additional contributions by Levitin [33] extended the UGF
approach for MSS to the case where element failures exhibit uni-
lateral dependency, while in Ref. [34], Levitin presented a UGF
model of multi-state systems in which some groups of elements
can be affected by uncovered failures that cause outages of the
entire group. Peng et al. [35] considered a UGF-based multi-state

series–parallel system with two types of parallelization, namely
redundancy and work sharing. The authors extend the problem of
finding the optimal balance between redundancy and task sharing
in multi-state systems with uncovered failures to the cases of
multi-fault coverage. More recently, Dao et al. [36] studied the
reliability analysis of MSS with s-dependent components, com-
bining techniques from stochastic processes and a modified UGF to
evaluate the system reliability and verify the combined approach
with Monte Carlo simulation.

This paper is a direct extension of Levitin's discrete UGF
approach for multi-state system reliability [33]. We extend this
fundamental approach to the case where the failures of elements
comprising the components of a MSS are identically distributed
but correlated and study the impact of correlated failures on the
performance and reliability of series and parallel MSS. We subse-
quently generalize the discrete UGF approach with correlated
identical components to the time varying case and assess the
impact of correlation on the reliability, density function, hazard
rate, mean time to failure, availability, and mean residual life
(MRL). The illustrations demonstrate that the approach can iden-
tify the impact of correlation on series and parallel MSS for various
minimum performance levels.

The proposed approach can be distinguished from previous
research which utilizes techniques such as CCF and Markov
dependence to characterize the correlation between the failures of
the elements of an MSS component or correlation between the
performance levels of MSS components. The CCF approach intro-
duces an exponential number of parameters and the Markov
method is subject to the state space explosion problem. The pro-
posed approach can also be distinguished from the authors' pre-
vious research on systems composed of correlated identical com-
ponents [37], which was limited to reliability and sensitivity
analysis of binary state systems composed of binary state com-
ponents and only considered a subset of the reliability measures
considered here. The present paper demonstrates the broad
applicability of correlated identical components in the context of
the universal generating function approach to multi-state system
performance and reliability assessment.

Correlated identical components possess an analytical form
which promotes computationally efficient point calculations. Fur-
thermore, the analytical nature of the expressions enables efficient
sensitivity analysis on the explicit correlation parameter, thereby
promoting intuitive assessment of the impact of correlation on a
range of reliability measures. The approach can thus enable quality
management, providing objective methods to assess the impact of

Nomenclature

Notation

X set of systems xAfs; pg
n number of components
kj number of distinct non-zero performance levels of

component j
gjh performance of component j in state h
gj vector of performance levels of component j
Gj random variable of performance level of component j
pjh probability component j exhibits state h
pj vector of component j states
Ln cross product of component performance levels
Kþ1 number of distinct system performance levels
M set of system performance levels
ϕ mapping of component performances to system per-

formance, Ln-M

W random variable of system performance level
wi system performance level in state iAf0;1;…;Kg
qi probability system exhibits performance level wi

Rx
wmin

probability system x performance meets or exceeds
minimum threshold wmin

ui u-function components i
�ϕx

composition operator of u-functions for system xAX
ρ component correlation
Rx
i ðtÞ reliability of system x for threshold wminZ i at time t

f xi ðtÞ density function of system x for threshold wminZ i at
time t

hxi ðtÞ hazard rate of system x for threshold wminZ i at time t
MTTFi

x MTTF of system x for threshold wminZ i
Ax
i availability of system x for threshold wminZ i

MRLxi ðtÞ MRL of system x for threshold wminZ i at time t
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