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a b s t r a c t

It might be difficult sometimes to derive theoretical and numerical solutions for analytical maintenance
modelings due to the computational complexity. This paper takes up several approximate models in
maintenance theory, by using the cumulative hazard function H(t) and the newly proposed asymptotic
MTTF (Mean Time to Failure) skilfully. We firstly denote by tx the time when the expected number of
failures is x. Using HðtxÞ ¼ x, we estimate failure times, model age and periodic replacements, and
sequential imperfect maintenance. Motivated by the asymptotic method of computation of MTTF, we
secondly model the expected cost rate for a parallel system when replacement is made at system failure,
and give approximate computations for the sequential inspection policy. Optimizations of each model
are obtained approximately in an easier way. When failure times have a Weibull distribution, it is shown
from numerical examples that the obtained approximate optimal solutions have good approximations of
the exact ones.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Manufacturing systems with performance degradation and
maintenance strategy are commonly encountered in practice.
There have been many maintenance models in reliability, most
of which are formulated stochastically, and are optimized analy-
tically or simulated numerically by using algorithms [2,15,11,9].

However, it sometimes might be difficult to derive theoretical
and numerical solutions for analytical maintenance modelings due
to the computational complexity. One example is the sequential
inspection policy [2], whose algorithm needs to make computa-
tions repeatedly until the procedure meets the required condition
by adjusting the first checking time. To avoid this trouble, a nearly
optimal inspection policy that depends on the parameter p was
suggested [7]. However, to suppose the unit fails with constant
probability p is too stronger to be applicable, even though this
policy has been used for Weibull and gamma distribution cases
[8,17]. Other works, such as an approximate solution of a main-
tenance policy for a system with multi-state components [4], an
approximate inspection interval for production processes with
finite run length [3], and approximations to determine the optimal

replacement times of a sequential age replacement policy for a
finite time horizon [6], have been discussed.

It has been well-known in reliability theory that the cumulative
hazard function H(t) represents the expected number of failures in
the time interval ½0; t� [11]. On the other hand, the most concerns
in reliability theory are to estimate the MTTF (Mean Time to
Failure) and maintenance times of systems; however, when the
system becomes more complex or larger sized, estimations
become more difficult. One approximate analytical approach has
been proposed to estimate a threshold maintenance policy for an n
identical unreliable components system [1]. An asymptotic MTTF
and approximate age replacement for a random-sized parallel
system have been proposed recently [13].

Followed by the conference discussion [12], we use the cumu-
lative hazard function H(t) and the approximate computation of
MTTF skilfully, and propose approximate methods to estimate
failure times, and to optimize replacement, maintenance, and
inspection policies. We show good approximations for the exact
results in numerical examples when their failure times have a
Weibull distribution as follows:

1. When failures occur at a non-homogeneous Poisson process
and the unit undergoes minimal repair at each failure, it is of
interest to observe the mean times of Xn between failures [11, p.
97]. We introduce HðtnÞ ¼ n in which tn ðn¼ 1;2;…Þ is the time
when the expected number of failures is n, and show that
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failure times Xn could be computed from a simpler
equation form.

2. We introduce the mean rate of failures HðTxÞ ¼ xð0oxr1Þ into
age and periodic replacement policies. Computation of approx-
imate Tx for age replacement is more easier but also is close to
the exact Tn. For the periodic replacement, both approximate
policies at time T and at number N of failures are obtained as
one simpler equation form.

3. For the imperfect preventive maintenance policy [11], we
obtain the approximate expected cost rate and its optimal
maintenance number Nn and sequential maintenance times
λTn

k . It also shows numerically that the above approximate
policies are close to the exact results.

4. Recently, an asymptotic method of computation of the MTTF
and optimization of age replacement [13] for a random-sized
parallel system are discussed. Using the approximate MTTF, we
compute optimal number of units needed for a parallel system
in an easier form, when replacement should be made after
system failure.

5. Although improvements have been made to compute sequen-
tial inspection policies [10] which have been summarized in
[11], it is still difficult to choose an appropriate ε to begin the
algorithm. Motivated by the above approximate MTTF, we
finally give approximate computations for the sequential
inspection times.

There has been lack of research on the approximate methods
for maintenance modelings and optimizations.

The remainder of this paper is organized as follows: Section 2
gives approximate xk for the mean times of Xn between failures.
The Tx and tnx are obtained as approximations of the exact
optimizations for age and periodic replacement policies in
Sections 3 and 4. Sequential imperfect maintenance times λTn

k
are derived in Section 5. An approximate number of units for a
parallel system and sequential inspections times ~T k are obtained
in Sections 6 and 7. Finally, conclusions of the paper are provided
in Section 8.

2. Failure times

A unit begins to operate at time 0 and will operate for an
infinite time span. The unit undergoes minimal repairs [2, p. 96] at
failures, where the time for each repair is supposed to be
negligible. Let 0¼ S0rS1r⋯rSn�1rSnr⋯ be the successive
random failure times and Xn � Sn�Sn�1 ðn¼ 1;2;…Þ be the vari-
able times between failures with distribution

Pr XnrxjSn�1 ¼ tf g ¼ F ðtÞ�F ðtþxÞ
F ðtÞ ¼ 1�e�½HðtþxÞ�HðtÞ�; ð1Þ

where failures occur at a non-homogeneous Poisson process with
a mean value function H(t) [16, p. 46; 14, p. 78], and FðtÞ � 1
�e�HðtÞ and F ðtÞ � 1�FðtÞ [11, p. 96].

Letting N(t) be the number of failures in ½0; t�, then the
probability that failures occur k times in ½0; t� is

Pr NðtÞ ¼ k
� �¼ ½HðtÞ�k

k!
e�HðtÞ ðk¼ 0;1;2;…Þ; ð2Þ

EfNðtÞg ¼
X1
k ¼ 0

kPrfNðtÞ ¼ kg ¼HðtÞ: ð3Þ

From [11, p. 97], we obtain

E Xk
� �¼

Z 1

0

½HðtÞ�k�1

ðk�1Þ! e
�HðtÞ dt ðk¼ 1;2;…Þ; ð4Þ

E Snf g ¼
Xn�1

k ¼ 0

Z 1

0

½HðtÞ�k
k!

e�HðtÞ dt ðn¼ 1;2;…Þ: ð5Þ

It is assumed that HðtnÞ ¼ n and xn � tn�tn�1, where
tn ðn¼ 1;2;…Þ represents the time when the expected number
of failures is n, then Hðxnþtn�1Þ�Hðtn�1Þ ¼ 1 represents that the
expected number of failures in ½tn�1; tn�1þxn� equals to 1. When
the failure time of the unit has a Weibull distribution, i.e.,
FðtÞ ¼ 1�e� tm and HðtÞ ¼ tm ðmZ1Þ, then (4) and (5) are

E Xk
� �¼

Z 1

0

tðk�1Þm

ðk�1Þ!e
� tm dt ¼ 1

m
Γðk�1þ1=mÞ

ðk�1Þ! ðk¼ 1;2;…Þ; ð6Þ

E Snf g ¼
Xn
k ¼ 1

E Xk
� �¼Γðnþ1=mÞ

ðn�1Þ! ðn¼ 1;2;…Þ: ð7Þ

Furthermore, when ðtnÞm ¼ n, i.e., tn ¼ n1=m, we obtain

xk ¼ tk�tk�1 ¼ k1=m�ðk�1Þ1=m ðk¼ 1;2;…Þ: ð8Þ
It is much easier to compute xk in (8) than to compute EfXkg in

(6). Table 1 presents exact EfXkg and approximate xk when
HðtÞ ¼ tm for m¼ 1:5;2:0;3:0. This shows that the approximate xk
is less than or equal to EfXkg when kZ2 and becomes very good
approximation for the exact EfXkg as k becomes larger.

3. Age replacement

An operating unit has a failure distribution F(t) and failure rate
hðtÞ � f ðtÞ=F ðtÞ, where f(t) is a density function of F(t). Consider the
standard age replacement policy in which the unit is replaced at a
planned time Tð0oTo1Þ or at failure, whichever occurs first.
Then, the expected cost rate is [2, p. 87; 11, p. 72]

C1ðTÞ ¼
c1FðTÞþc2F ðTÞR T

0 F ðtÞ dt
; ð9Þ

where c1 and c2 ðc2oc1Þ are respective replacement costs at
failure and at time T. If the failure rate h(t) increases strictly to
1, then an optimal Tn minimizing C1ðTÞ is given by a unique
solution of the equation

hðTÞ
Z T

0
F ðtÞ dt�FðTÞ ¼ c2

c1�c2
: ð10Þ

From the above standard age replacement, we find that the
only interest is to observe replacement actions that are done
before the first failure or at the first failure. We suppose that

Table 1
Exact EfXkg and approximate xk when HðtÞ ¼ tm .

k m¼1.5 m¼2.0 m¼3.0

EfXkg xk EfXkg xk EfXkg xk

1 0.903 1.000 0.886 1.000 0.893 1.000
2 0.602 0.587 0.443 0.414 0.298 0.260
3 0.502 0.493 0.332 0.318 0.198 0.182
4 0.446 0.440 0.277 0.268 0.154 0.145
5 0.409 0.404 0.242 0.236 0.129 0.123
6 0.381 0.378 0.218 0.213 0.111 0.107
7 0.360 0.357 0.200 0.196 0.099 0.096
8 0.343 0.341 0.186 0.183 0.090 0.087
9 0.329 0.327 0.174 0.172 0.082 0.080

10 0.317 0.315 0.164 0.162 0.076 0.074
20 0.248 0.248 0.114 0.113 0.047 0.046
30 0.216 0.216 0.092 0.092 0.035 0.035
50 0.182 0.182 0.071 0.071 0.025 0.025
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