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a b s t r a c t

In reliability, sometimes some failures are not observed at the exact moment of the occurrence. In that
case it can be more convenient to approximate them by a time interval. In this study, we have used a
generalized non-linear model developed for interval-censored data to treat the life time of a pipe from
its time of installation until its failure. The aim of this analysis was to identify those network
characteristics that may affect the risk of failure and we make an exhaustive validation of this analysis.
The results indicated that certain characteristics of the network negatively affected the risk of failure of
the pipe: an increase in the length and pressure of the pipes, a small diameter, some materials used in
the manufacture of pipes and the traffic on the street where the pipes are located. Once the model has
been correctly fitted to our data, we also provided simple tables that will allow companies to easily
calculate the pipe's probability of failure in a future.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Worldwide, water supply systems (WSS) face the problem of
aging infrastructures and increasing maintenance costs. The profits
of drinking water supply companies and service quality for citizens
depend on the reliability of the pipes. The classical reactive
approach (used by most companies) is to wait until there is a
failure in the network and then repair it, which is obviously not the
best way to handle this essential public service from the point of
view of either quality or reliability while by contrast other proactive
strategies based more on prevention are required. These require
information, quantitative tools, and advanced reliability modelling
to evaluate and predict risks of failures to assess current and future
state of the network. The need for these proactive strategies is even
greater in developing countries with stronger economic restrictions
than advanced countries. Thus, companies with these proactive
strategies would have a clearer framework to make decisions on the
diagnosis and rehabilitation of the pipes for effective prevention of
failures in the network. We analyze failure data registered in a
water supply network in order to evaluate the probability of pipe
failure. This study also assesses and identifies those factors that may
affect the risk of failure in order to better plan breakdown service.

In reliability analysis, data refer to time from a well-defined time
origin until the occurrence of some particular event or end-point. In
this analysis, the variable of interest is the time T (in years) from the
installation of the pipe (time origin) until its first failure (end-point). T
is the time of the pipe until the first failure being as in the database is
only recorded the only failure, no more. Possible subsequent repairs
are not registered. Therefore, we consider the only registered failure
as the end-point of the lifetime. In a standard analysis of the time
until the occurrence of an event, failure times are known and
observed exactly or right-censored. In this type of data the propor-
tional hazard model [1] has been widely used. However, in some
situations these failure times can occur in a given time interval as, for
example, in survival analysis, where the event of interest, the relapse
of a patient, occurs between two visits to the surgery (time interval).
The data in this form are referred to as grouped or arbitrarily interval-
censored data. In our case, we analyze failure data registered in a
water supply network in order to evaluate the probability of pipe
failure. For this, we have considered an observation window from the
year 2000 until 2005 for the pipe failure times, a brief recorded pipe
break history. This sampling scheme induces left-truncation into the
data set (since failures before 2000 are not considered in the sample
information) and right-censoring (for pipes that fail after 2005). Left-
truncation is a common problem for water pipes' data sets. Some
studies have dealt with this problem: [2] compare the risk associated
with different statistical survival models applied to these same data
sets of the present paper, under the assumption that left-truncation is
a minimal problem and, more recently, it is used as an extended
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version of the Nelson—Aalen estimator, modified to accommodate
left-truncation as well as right-censoring [3]. Mailhot et al. [4] present
a methodology to estimate calibration parameters of statistical
models in municipalities with short recorded pipe break histories.
Kleiner and Rajani [5] also deal with recorded pipe break histories.
Their model is based on an exponential relationship. Finally [6]
propose a formal statistical approach to extend the likelihood function
of a pipe failure model by a replacement model because common
datamanagement practices mean that replaced pipes are often absent
from available data sets leading to a survival selection bias, as pipes
with frequent failures are more likely to be absent from the data.

In this study we used a method for modelling interval-censored
data developed by Farrington [7] in the parametric model framework.
This model assumes proportional hazards and it is based on a non-
linear model for binary data. We use this method of easy implementa-
tion with a standard statistical package and interpretation analogous
to the Cox model. Moreover, the same author develops a comprehen-
sive account of diagnostic methods to use with proportional hazard
models for interval-censored data which provides a validation of his
own model [8]. Previously, we used this methodology with another
database in the survival analysis framework [9], rounding off the
analysis [10] carried out with the Cox model.

This study is organized as follows: firstly, we describe Farring-
ton's model and the implementation to an interval-censored
database. Secondly, we present our water supply network data-
base and how the variable T is calculated for each pipe by an
interval of time. Thirdly, we apply the model by identifying the
main characteristic factors which can affect the failure risk,
comparing the results with two other well-established models in
reliability analysis: the Cox and the Generalized Linear Models.
Next, we validate the Farrington model by means of standard
diagnostic tools developed by that author. Finally, under the
assumption that the model is correctly fitted to our set of
interval-censored data, we provide simple risk tables that will
allow companies to easily calculate the pipe's probability of no
failure at ten, thirty and fifty years.

2. Farrington's model for interval-censored data

First of all, we consider one basic function in reliability analysis,
which is the reliability function, R(t). This function is the probability
that the time to failure, T, is larger than or equal to t

RðtÞ ¼ PðTZtÞ ¼ 1�FðtÞ ð1Þ
with F(t) being the distribution function of the variable T .

Farrington's model supposes that the failure time for the ith
pipe is observed in an interval ðai; bi�, that is, the failure has not
occurred by time ai but has occurred by time bi, where the values
ai and bi are different for each pipe. There are three types of
interval-censored observations:

� If the event time for a pipe is left-censored at time bi, so that the
event is only known to have occurred some time before bi, then
ai¼0.

� If the event time is right-censored at time ai, so that the event is
only known to have occurred after time ai, the upper limit of
the interval, bi, is then effectively infinite.

� If the values of both ai and bi are observed for a pipe, the
interval-censored observation is said to be confined.

The probability of failure occurring in the interval ðai; bi� for the ith
pipe is RiðaiÞ�RiðbiÞ. Thus, the likelihood function for the n pipes is

∏
n

i ¼ 1
RiðaiÞ�RiðbiÞð Þ ð2Þ

Now let us suppose from these n pipes that l observations are left-
censored, r observations are right-censored and c observations are
confined with n¼ lþrþc, in such a way that the first l observations
are left-censored, the next r ones are right-censored and the remain-
ing c observations are confined (0oaiobio1).

Since Rið0Þ ¼ 1 and Rið1Þ ¼ 0, the contributions of a left- and
right-censored observation to the likelihood function will be
1�RiðbiÞ and RiðaiÞ, respectively. Consequently, the overall like-
lihood function (2) can be rewritten as follows:

∏
l

i ¼ 1
1�RiðbiÞð Þ ∏

lþ r

i ¼ lþ1
RiðaiÞ ∏

n

i ¼ lþ rþ1
RiðaiÞ�RiðbiÞð Þ ð3Þ

where the last component RiðaiÞ�RiðbiÞ of confined observations
can be rewritten by RiðaiÞð1�RiðbiÞ=RiðaiÞÞ.

Farrington shows that this likelihood function (3) is equivalent
to the following expression:

∏
nþ c

i ¼ 1
pyii ð1�piÞ1�yi ð4Þ

where y1; y2;…; ynþ c are a set of nþc independent binary obser-
vations from a Bernoulli distribution with a response probability
pi, i¼ 1;…;nþc. To see the relationship between the probabilities
pi in (4) and the values of the reliability function in (3), the
following is considered:

� Each left-censored observation contributes a binary observation,
with yi¼1 and pi ¼ 1�RiðbiÞ, i¼ 1;…; l.

� Each right-censored observation contributes a binary observa-
tion with yi¼0 and pi ¼ 1�RiðaiÞ, i¼ 1;…; r.

� Each confined observation contributes two binary observations
to give the required component of RiðaiÞ 1�RiðbiÞ=RiðaiÞ

� �
in (3):

one of these is yi¼0 and pi ¼ 1�RiðaiÞ, while the other is such
that ycþ i ¼ 1 and pcþ i ¼ 1�RiðbiÞ=RiðaiÞ, for i¼ lþrþ1;
lþrþ2;…;n.

Combining all these terms then leads to three new components
of the likelihood in (4). Therefore, the final expression for this
likelihood function is

∏
l

i ¼ 1
pi ∏

lþ r

i ¼ lþ1
ð1�piÞ ∏

n

i ¼ lþ rþ1
ð1�piÞpcþ i ð5Þ

Table 1 shows the intervals defined by Farrington for his model
and values of the variable yi for each type of interval-censored
observation.

In a second step the expression for the reliability function Ri(t)
is constructed. Farrington assumes the proportional hazard model
for the reliability function and so

RiðtÞ ¼ R0ðtÞ expðβ0xiÞ ð6Þ
with xi being the vector of values of the p explanatory variables for
the ith pipe, i¼ 1;2;…;n. The baseline reliability function R0ðtÞ is
modelled as a step function, where the steps occur at the k ordered
censoring times, tð1Þ; tð2Þ;…; tðkÞ, with 0otð1Þotð2Þo…otðkÞ and
the times tðjÞ, j¼ 1;2;…; k, are a subset of the values of ai and bi,
i¼ 1;2;…;n. The procedure for choosing the times tðjÞ is explained

Table 1
Definition of the Ai intervals in Farrington's model for left–censored, right–censored
and confined observations.

Type of observation Value of yi Interval Ai

Left-censored 1 ð0; bi�, i¼ 1;2;…; l
Right-censored 0 ð0; ai�, i¼ lþ1; lþ2;…; lþr
Confined 0 ð0; ai�, i¼ lþrþ1; lþrþ2;…;n

1 ðai� c ;bi� c�, i¼ nþ1;nþ2;…;nþc
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