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Stochastic process-based models are developed to characterize the generation and growth of metal-loss
corrosion defects on oil and gas steel pipelines. The generation of corrosion defects over time is
characterized by the non-homogenous Poisson process, and the growth of depths of individual defects is
modeled by the non-homogenous gamma process (NHGP). The defect generation and growth models are
formulated in a hierarchical Bayesian framework, whereby the parameters of the models are evaluated
from the in-line inspection (ILI) data through the Bayesian updating by accounting for the probability of
detection (POD) and measurement errors associated with the ILI data. The Markov Chain Monte Carlo
(MCMC) simulation in conjunction with the data augmentation (DA) technique is employed to carry out
the Bayesian updating. Numerical examples that involve simulated ILI data are used to illustrate and
validate the proposed methodology.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The metal-loss corrosion involves two processes, namely the
growth of existing defects and generation of new defects. Both
processes are inherently random. The reliability-based corrosion
management of steel oil and gas pipelines usually consists of
inspections of pipelines using high-resolution inline inspection
(ILI) tools to locate and size corrosion defects, evaluation of the
time-dependent probabilities of failure of corroding pipelines and
determination of suitable defect mitigation strategies to limit the
probabilities of failure to acceptable levels. While the failure
probability of a corroding pipeline is influenced by both the
growth of existing defects and generation of new defects, the
current practice generally focuses on the former but ignores the
latter aspect. The present study is aimed at incorporating both
aspects in the pipeline corrosion management to improve its
accuracy and effectiveness.

Stochastic processes, e.g. the gamma process [1,2] and Markov
chain [3,4], have been employed to model the growth of corrosion
defects on pipelines. Recently, the gamma process-based corrosion
growth models in conjunction with the hierarchical Bayesian
methodology have been developed based on the data obtained
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from multiple in-line inspections (ILIs) of pipelines [5,6]. The
Poisson processes, including the homogeneous and non-
homogenous Poisson process (HPP and NHPP), have been used
to characterize the generation of corrosion defects [7,8]. Hong [7]
employed HPP to investigate the impact of newly generated
defects on the evaluation of the failure probability of corroding
pipelines. Valor et al. [8] develop an NHPP-based generation model
and a Markov chain-based growth model for pitting corrosion.
Inspection data provide valuable information pertaining to the
condition of corrosion defects. However, inspection data are
subjected to the detecting uncertainty as reflected in the prob-
ability of detection and probability of false call, and the sizing
uncertainty (i.e. the measurement errors) [9]. Yuan et al. [10]
developed a Bayesian model to predict the number and depths of
corrosion pits on steam generators in nuclear power plants based
on in-service inspection data, by taking into account the prob-
ability of detection and measurement errors associated with the
inspection data. The authors assumed that corrosion pits grow
rapidly to stable sizes within a short period of time; as a result, all
corrosion pits were treated as static in their study. The Markov
Chain Monte Carlo (MCMC) simulation in conjunction with the
data augmentation technique was used to carry out the Bayesian
updating. In Refs. [11,12], the maximum likelihood method was
employed to estimate parameters of probabilistic defect growth
models using inspection data containing measurement errors. In
particular, a linear growth model is established in a two-stage
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hierarchical structure in [11], and the gamma process-based
growth model was adopted in [12] with the model parameters
evaluated using a computationally-efficient maximum likelihood
method that incorporates the Genz transform and quasi-Monte
Carlo method. Note that the generation of defects over time was
not considered in [11] or [12].

Kuniewski et al. [13] developed a sampling-inspection strategy
for the reliability evaluation of corroding structures. They
employed NHPP and the gamma process to characterize the defect
generation and growth, respectively, and showed that the number
of defects deeper than a certain threshold by a given time also
follows NHPP. The formulation for Bayesian updating of the defect
generation model based on the inspection data was derived;
however, the updating of the defect growth model was not
considered (the parameters of the growth model were assumed
to be known). The probability of detection was considered in the
updating, but the measurement errors were ignored.

The objective of the present study was to develop a probabil-
istic model to characterize the growth of existing defects and
generation of new defects on pipelines based on the imperfect ILI
data. The growth modeling was focused on the defect depth (i.e. in
the through-pipe wall thickness direction), as this is the most
critical defect dimension. The model was formulated in a Bayesian
framework, which accounts for the inherent variability involved in
the corrosion process as well as the detecting and sizing uncer-
tainties associated with the ILI tool. The non-homogeneous
gamma process was used to model the growth of defect depths,
and the non-homogenous Poisson process was employed to model
the generation of new defects. The MCMC simulation and data
augmentation technique were used to carry out the Bayesian
updating to evaluate the model parameters. Numerical examples
involving simulated inspection data were used to illustrate and
validate the proposed methodology. Compared with previous
studies in the literature, the main contribution of this study is
the proposed Bayesian framework for updating both the defect
growth and generation models based on imperfect insp-
ection data.

The rest of this paper is organized as follows. Section 2 briefly
describes the uncertainties involved in the ILI data; Section 3
presents the probabilistic models for the defect generation and
growth adopted in this study; the Bayesian methodology for
evaluating the defect generation and growth models based on
the inspection data is described in Section 4; numerical examples
are given in Section 5, and conclusions are presented in Section 6.

2. Uncertainties in the ILI tool

Two types of uncertainties associated with the ILI tool were
considered in this study, namely the measurement error and
imperfect detectability. The former includes the biases and ran-
dom scattering error, whereas the latter is characterized by the
probability of detection (POD) and probability of false call (POFC).

2.1. Measurement error

The ILI-reported depth of the jth defect at the ith inspection, y;;,
(i,j=1, 2,...) can be related to the corresponding actual depth, x;,
through the following equation [14,15]:
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where g; and b; denote the biases associated with the ILI tool used
in the ith inspection (a;=0 and b;=1 corresponding to an unbiased
tool), and &;; denotes the random scattering error associated with
the ILI-reported depth of the jth defect at the ith inspection, and is
assumed to be normally distributed with a zero mean and

standard deviation o;. For ILI of oil and gas pipelines, it is common
practice [16] to track the same defect in different inspections (i.e.
the so-called defect matching) based on the longitudinal and
circumferential positions of the defect reported by ILI tools. It is
assumed that for a given inspection i, &; and & (j # k) (i.e. the
random scattering errors associated with the ILI-reported depths
of the jth and kth defects) are independent, whereas for a given
defect j, &; and & (i#1) may be correlated with a correlation
coefficient of pj; [16]. Let Ej=(Eqj, Es;...,E5j) denote the vector of
random scattering errors associated with s inspections for defect j,
with “” representing transposition. It follows from the above
assumption that E; is multivariate normal-distributed and has a
probability density function (PDF) given by
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where Egj denotes the s x s variance-covariance matrix of E; with
the element at the ith row and Ith column equal to p;oc;o;. In this
study, a;, b; and Xg; were assumed to be known quantities whose
values can be evaluated by comparing the ILI-reported and
corresponding field-measured depths for a set of benchmark
defects [16] or inferred from the vendor-supplied specifications
for the accuracy of the ILI tools. It should be pointed out that the
random scattering errors conditional on a given set of ILI data
must satisfy the constraint that the growth of the actual defect
depth is non-negative, and consequently does not follow a multi-
normal distribution.

2.2. Probability of detection and probability of false call

POD represents the ability of an ILI tool to detect a true
corrosion defect. It is typically a function of the size of the defect
and a set of parameters indicating the inherent detecting cap-
ability of the ILI tool. The following exponential POD function [17]
was adopted in this study:
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where x denotes the actual depth of a given defect; x,, denotes the
detection threshold, i.e. the smallest defect size that can be
detected, and g is a constant that characterizes the inherent
detecting capability of the ILI tool. If x,, and the POD value for a
given defect depth are known, the value of g can be readily
computed.

The probability of false call (POFC) is the probability of an ILI
tool obtaining an indication of a defect that does not exist in
reality. POFC was ignored in the present study; in other words, all
the ILI-reported corrosion defects were assumed to be true
corrosion defects.

3. Probabilistic models for defect generation and growth
3.1. Defect generation

The non-homogeneous Poisson process (NHPP) was employed
to characterize the generation of new defects, as the model has
been widely used in the literature (e.g. [8,13]). According to this
model, the total number of defects, N(t), generated within a time
interval [0, t] (e.g. t=0 denotes the time of installation of the
pipeline) over a given segment of the pipeline follows a Poisson
distribution with a probability mass function (PMF), fp(N(t)im(t)),
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