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a b s t r a c t

Importance Measures are indicators of the risk significance of the components of a system. They are
widely used in various applications of Probabilistic Safety Analyses, off-line and on-line, in decision
making for preventive and corrective purposes, as well as to rank components according to their
contribution to the global risk. They are primarily defined for the case the support model is a coherent
fault tree and failures of components are described by basic events of this fault tree.

In this article, we study their extension to complex components, i.e. components whose failures are
modeled by a gate rather than just a basic event. Although quite natural, such an extension has not
received much attention in the literature. We show that it raises a number of problems. The Birnbaum
Importance Measure and the notion of Critical States concentrate these difficulties. We present
alternative solutions for the extension of these notions. We discuss their respective advantages and
drawbacks.

This article gives a new point of view on the mathematical foundations of Importance Measures and
helps us to clarify their physical meaning.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Importance Measures are indicators of the risk significance of
the components of a system. They are widely used in various
applications of Probabilistic Safety Analyses, off-line and on-line,
in decision making for preventive and corrective purposes, as well
as to rank components according to their contribution to the
global risk. Presentations of these indicators and discussions about
their mathematical properties and their physical interpretations
can be found for instance in References [1–12].

Importance Measures are primarily defined for the case the
support model is a coherent Fault Tree and failures of components
are represented by basic events of this fault tree. In this article, we
study their extension to complex components, i.e. to components
whose failures are modeled by a gate and not just by a Basic Event.
Although quite natural, this extension has not received much
attention in the literature (see however [13,14]).

We proceed in two steps. First, we revisit definitions of the
main Importance Measures and we show that, in the case of
simple components, each of them characterizes the probability of
a set of minterms, i.e. of a set of global states of the system under
study. Namely,

� The states in which both the component and the system are
failed, as for the Diagnostic Importance Factor and the Risk
Achievement Worth.

� The states in which the system is failed but the component is
working, as for the Risk Reduction Worth.

� The Critical States, i.e. states in which failing/repairing the
component suffices to repair/fail the system, as for the Birn-
baum Importance Measure (also called Marginal Importance
Factor) and the Critical Importance Measure.

This new way of defining Importance Measures via minterms does
not mean that they need to be calculated via minterms. Calcula-
tions can actually be still performed by means of Minimal Cutsets
or Binary Decision Diagrams. Its interest stands in the soundness
of mathematical definitions, the independence of any calculation
means and the simplicity of physical interpretations.

Second, we show that this nice correspondence between the
probabilistic definition and the minterm interpretation does not
hold for complex components. The Birnbaum Importance Measure
and the notion of Critical States concentrate the difficulties.

So far, complex components have been studied in the literature
only via the extension of Importance Measures to groups of (simple)
components (see e.g. [6,10,12,14–19]). Several authors showed
already that the definition of the Birnbaum Importance Measure in
terms of a partial derivative is not suitable for groups of components
(see e.g. [20,21]). They proposed therefore to define the Birnbaum
Importance Measure as the difference between the conditional
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probability that the system is failed given that all components of the
group are failed and the conditional probability that the system is
failed given that none of the components of the group are failed. This
definition is actually equivalent to the partial derivative one in the
case the group is reduced to a single component. It could be applied
to complex components as well, as proposed for instance by Sutter
[14]. We show however that this indicator is much too coarse. First, it
does not allow us to distinguish components with different structure
functions (a parallel sub-system would be evaluated the same way as
a series sub-system). Second, it leads to consider as critical states,
states in which the system is failed but the component is working.
We show that finer extensions can be defined, but necessarily to the
price of losing the correspondence between the probabilistic defini-
tion and the minterm interpretation.

This article contributes therefore to establish more firmly the
mathematical foundations of Importance Measures and to clarify
their physical interpretation. It also gives hints to tool developers
about which indicators are worth to calculate from a safety model.

The remainder of this article is organized as follows:

� Section 2 introduces basic definitions and properties. It gives a
formal definition for the notion of coherence and Critical States.

� Section 3 revisits definitions and interpretations of Importance
Measures in the case the support model is a coherent Fault Tree
and failures of components are represented by Basic Events.

� Section 4 discusses extensions of Importance Measures to
complex components and groups of components.

� Finally, Section 5 concludes the article.

2. Basic definitions and properties

2.1. Boolean formulas and minterms

Throughout this article we consider Boolean formulae (Fault
Trees) built over a denumerable set E of variables and the usual
connectives “ � ” (and), ‘þ ‘” (or) and “�” (not). Variables are also
called Basic Events.

We use uppercase letters E, A, B, C, possibly with subscripts, to
denote Basic Events.

We use lowercase letters s, t, c, possibly with subscripts, to
denote Boolean formulae. We denote by varðsÞ the variables
occurring in the formula s.

Let s be a Boolean formula. A variable assignment of s is a function
from varðsÞ into f0;1g (0 and 1 stand respectively for False and True).
Variable assignments are lifted-up as usual into functions from for-
mulae into f0;1g using the truth tables of connectives. A Boolean
formula s is interpreted as the Boolean function 1sU, i.e. as the function
from variable assignments of s into 0;1, defined as follows: for any
variable assignment σ of s, 1sUðσÞ ¼ 1 if σðsÞ ¼ 1 and 0 otherwise.

In this paper, we do not need to distinguish between syntax
and semantics. Therefore, we shall assimilate the Boolean formula
s with its semantics 1sU.

A literal is either a variable E or its negation E . We use
uppercase letters L, I, J, possibly with subscripts to denote literals.
We denote by L the opposite of a literal L, given that L � L. Let L be
a set of literals, we denote by L the set of negations of literals of L,
i.e. fL; LALg.

A product is a conjunct of literals that does not contain both a
variable and its negation. Let s be a Boolean formula. A minterm of s
is a product that contains a literal built over each variable of varðsÞ.
We use lowercase Greek letters σ, τ π, and ρ, possibly with subscripts,
to denote products and minterms. We denote as MintermsðEÞ the set
of 2j E j minterms that can be built over a set of Basic Events E.

There is a one-to-one correspondence between variable assign-
ments and minterms (and therefore between Boolean functions
and sets or sums of minterms): the variable assignment σ one-to-
one corresponds with the minterm π such that π contains the
positive literal E if σðEÞ ¼ 1 and the negative literal E if σðEÞ ¼ 0. It
follows that any Boolean formula s is equivalent to the set of
minterms π such that πðsÞ ¼ 1. Minterms of MintermsðEÞ are the
atoms of the Boolean algebra built over E.

For the sake of the convenience, we shall use a set theory
notation, i.e. we shall note πAs when πðsÞ ¼ 1 and π =2s when
πðsÞ ¼ 0. Note also that π=2s if and only if πAs.

Example (Minterms). As an illustration, consider the two formu-
lae s1 ¼ A � BþA � CþB � C and s2 ¼ A � BþA � C. The minterms of s1
and s2 are as follows:

s1 � A � B � CþA � B � CþA � B � CþA � B � C
s2 � A � B � CþA � B � CþA � B � CþA � B � C

From a more practical perspective, assuming that the plant
under study is modeled by a Fault Tree, minterms just describe full
state vectors of the plant. Let s be the formula associated with the
Top-Event of a fault tree, then products π that satisfy s (πAs) are
the cutsets of s.

Let s be a Boolean function and L¼ fL1;…; Lkg be a set of literals
built over a subset of varðsÞ. We denote by sjL the Boolean function
built over varðsÞ{varðLÞ as follows:

sj fL1;…; Lkg ¼def fπ j L1:…:Lk � πAsg
For the sake of the simplicity, we write sj L1;…; Lk (instead of

sj fL1;…; Lkg). The notation sj L is intentionally close to the one used
for conditional probabilities because it is really what it means: s
given L.

Example ðsj LÞ. Considering the function s1 defined above, the
following equalities hold:

s1 jA� B � CþB � CþB � C ¼ BþC

s1 jA � B � C
s1 jA;B� C

s1 jA;B � C

2.2. Shannon decomposition and coherence

We can now state the Shannon decomposition.

Property 1 ((Logical) Shannon decomposition). Let s be a Boolean
formula and E a Basic Event of varðsÞ. Then, the following equivalence
holds:

s� E � sjEþE � sjE

Throughout this article, we shall assume that Basic Events are
independent from a statistical viewpoint. The above equivalence is
translated in terms of probability by the either of the two
equalities that will play an important role latter.

Property 2 ((Probabilistic) Shannon decomposition). Let s be a
Boolean formula and E a Basic Event of varðsÞ. Then, the following
equalities hold:

Prfsg ¼ PrfEg � PrfsjEgþ½1�PrfEg� � PrfsjEg ð1Þ

Prfsg ¼ PrfEg � ½PrfsjEg�PrfsjEg�þPrfsjEg ð2Þ
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