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a b s t r a c t

In this article, we study the semantics of dynamic fault trees and related formalisms. We suggest that
there are actually three mechanisms at work in dynamic fault trees: first, changes of states due to
occurrences of events, second bottom-up propagations of values as in static fault trees, and third top-
down propagations of demands of activations of components. We propose a direct translation of
dynamic fault trees into guarded transitions systems, the underlying mathematical model of the AltaRica
3.0 modeling language. This encoding provides a good basis for our study. We discuss also assessment
algorithms at hand in light of this translation.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the recent past years, dynamic fault trees and related formalisms
have focused a large attention in the reliability engineering literature
(see e.g. [7,13,3,11,4,5,8,15,17]). By adding some extra-logical con-
structs to regular/static fault trees, one aims to describe dynamic
behaviors, i.e. to put constraints on order of occurrences of events,
while maintaining the conceptual (and graphical) simplicity of fault
trees. This increase in expressive power comes indeed with a price:
models cannot be interpreted anymore in the Boolean algebra
framework.

In this article, we claim that there are actually three mechanisms at
work in dynamic fault trees and Boolean Driven Markov Processes:
first, changes of states of due to occurrences of events, second bottom-
up propagations of values as in static fault trees, and third top-down
propagations of demands of activations of components. To define a
sound semantics of dynamic fault trees, we encode them into guarded
transitions systems. Guarded transitions systems have been introduced
in reference [19]. They are at the core of the new version of the high
level modeling language AltaRica 3.0 (see e.g. [20]). Guarded transitions
systems are (finite or infinite) state automata with input and outputs.
They generalize most of the formalisms used for probabilistic safety
analyses, including static fault trees, reliability block diagrams and
generalized stochastic Petri nets. The definition of a semantic for
dynamic fault trees involves actually multi-state components, immedi-
ate and timed (stochastic) transitions as in generalized stochastic Petri
nets [1] (these concepts are not available in block diagrams or static
fault trees), as well as block-wise construction and remote value
propagation as in reliability block diagrams (these concepts are not
available in generalized stochastic Petri nets).

The encoding we propose here is based on some preprocessing and
a one-to-one correspondence between dynamic fault tree constructs
and their counterparts in terms of guarded transitions systems. In other
words, we design a library of reusable modeling components, one per
dynamic fault tree construct. The design of a dynamic fault tree model
consists then simply in assembling these predefined components.
Proceeding this way presents at least three important advantages
compared to specific approaches. First, it clarifies the semantics of each
and every construct. Second, it makes it easy to extend the library with
new constructs. Third, all assessment tools designed for guarded
transition systems are instantly applicable to dynamic fault trees.
Regarding this last point, the key question is to determine whether
assessment algorithms can take advantage of the specificity of dynamic
fault tree constructs. We give arguments to show that this question
should be studied in light of the models chosen for basic components
and that the answer is probably negative.

The original contribution of this article is twofold. First, we show
that guarded transitions systems provide a suitable framework to
clarify the semantics of dynamic fault trees. Second, we relate this
semantic and assessment algorithms at hand with models chosen for
basic events.

The remainder of the article is organized as follows. Guarded
transitions systems are introduced Section 2. The translation of
dynamic fault tree constructs into guarded transition systems is
studied Section 3. Finally, algebraic interpretations and assess-
ments algorithms are discussed Section 4.

2. Guarded transitions systems

2.1. Definition

A Guarded Transitions System is a quadruple, 〈V¼S⊎F, E, T, A〉
where,
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– S and F are two disjoint (finite) sets of variables. S is the set of
state variables, F the set of flow variables. Variables have a type
(Boolean, Integer, an Enumeration of symbolic constants…) and
a default/initial value.

– E is a (finite) set of events. Events are either immediate or
stochastic.

– T is a set of transitions. Transitions are triple 〈G, e, P〉, where G is
Boolean condition built over state and flow variables, e is an
event, and P is an assignment of a state variables, i.e. a set of
individual assignments of the form s:¼K, where s is a state
variable and K is an expression built over variables. G and P are
called respectively the guard and the action of the transition.
For the sake of clarity, the transition 〈G, e, P〉 is denoted e: G-P.

– A is an assertion, i.e. a set of assignments in the form f:¼L,
where f is a flow variable and L is an expression built over
variables. A flow variable is assumed to appear only once as the
left member of an equation.

A transition is fireable when its guard is satisfied by the current
values of variables. The firing of a transition is a two steps process:
first, the action is performed, i.e. the values of (some) state
variables are changed; second, the values of flow variables are
updated by means of the assertion. Immediate transitions take no
time while timed (or stochastic) transitions are assumed to take
some (possibly infinitely small) amount of time. The underlying
model of time is similar to the one of generalized stochastic Petri
nets [1] if we assume that delay of stochastic transitions are
Markovian (i.e. obey negative exponential distributions).

The update of flow variables after each transition firing is
performed thanks to a fixpoint mechanism [19], i.e. values of left
members of equations are recalculated until the system stabilizes.
This stabilization is obtained in at most two passes, i.e. it is linear
in the size of the assertion in the worst case. It is atomic, i.e. it is
assumed to take no time (as immediate transitions). The important
point here is that this fixpoint mechanism makes it possible to
model remote interactions between components.

To illustrate the above definitions, let us consider first a simple
non-repairable component. The guarded transition system for this
component is pictured Fig. 1. It is made of the following elements:

– A state variable s, which takes its value into the enumeration
{working, failed}. The initial value of s (working) is indicated
with a small entering arrow.

– A Boolean flow variable: out.
– A stochastic event: failure.
– A transition transitions:
– failure: s¼working-s:¼failed
– An assertion made of an unique assignment:
– out:¼ (s¼failed)

Now consider a spare, non-repairable component in cold
redundancy. The guarded transition system for that component
is pictured Fig. 2. It is made of the following elements:

– Two state variables a and s, which take respectively their values
into enumerations {standby, active} and {working, failed}.

– Two Boolean flow variables: demand and out.
– Four events: start, failureOnDemand, failure and dormantFai-

lure. start and failureOnDemand are immediate (pictured as
dashed arrows). Failure and dormantFailure are stochastic
transitions (pictured as plain arrows).

– Four transitions:
– start: a¼standby and demand-a:¼ active
– failureOnDemand: a¼standby and s¼working and demand-

a:¼ active, s:¼ failed
– failure: a¼active and s¼working-s:¼ failed

– dormantFailure: a¼standby and s¼working-s:¼ failed
– An assertion made of a unique assignment (“demand” is an

input flow variable):
– out:¼(s¼ failed)

This example is helpful to introduce a point we did not
discussed so far. Three transitions leave the state “a¼standby
and s¼working”. Two of them are immediate (“start” and “fail-
ureOnDemand”) and one is stochastic (“dormantFailure”). When
the input flow “demand” gets true, these three transitions are in
conflict. However, in the Markovian framework adopted in this
article, the probability that the delay associated with the stochastic
transition is null is zero. Therefore, immediate transitions have the
priority. Still they are in conflict. The choice between “start” and
“failureOnDemand” is non-deterministic. It is possible however to
influence the probabilities with which transitions in conflict are
fired by associating a weight (called expectation in AltaRica
3.0 jargon) with each of them. The probability that a particular
transition is fired is then the weight of this transition divided by
the sum of the weights of the transitions in conflict. By default, the
weight of a transition is 1.

2.2. Composition

Guarded transition systems can be enclosed into blocks (as
illustrated Figs. 1 and 2). Then blocks can be composed to create
larger blocks, as illustrated Fig. 3 where the model for the simple
component described Fig. 1 and the model for the spare compo-
nent described Fig. 2 are composed with a block G representing an
AND gate. The idea behind the encoding of dynamic fault trees
into guarded transition systems is to design a library of generic
blocks representing each type of basic events and gates and then
to assemble instances of these blocks just as exemplified Fig. 3.
This encoding provides a sound semantics for dynamic fault trees
because the semantics of guarded transition systems is itself
completely and formally defined [19]. Guarded transitions systems
are actually richer than what we presented here. However, this
presentation suffices for the purpose of the present article.

Fig. 1. The guarded transition system for a non-repairable component.

Fig. 2. The guarded transitions system for a spare non-repairable component.
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