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a b s t r a c t

The Unscented Transformation (UT) is a technique to understand and compute how the uncertainty of a
set of random variables, with known mean and variance is propagated on the outputs of a model,
through a reduced set of model evaluations as compared with other approaches (e.g., Monte Carlo). This
computational effort reduction along with the definition of a proper UT model allows proposing an
alternative approach to quantify the transition rates (TR) having the highest contribution to the variance
of the steady-state probability, for each possible state of a system represented by a Markov model. The so
called “main effects” of each transition rate, as well as high order component interactions are efficiently
derived from the solution of only (2nþ1) linear system of simultaneous equations, being n the number
of transition rates in the model.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Markov models are often used to assess the performance of
repairable systems when considering reliability and/or availability
metrics [1–5]. The assessment generally involves the calculations
of the steady-state probabilities for each possible system perfor-
mance state by solving a series of simultaneous equations based
on transition rates among component states. A system analyst
could then understand how the transition rates affect the perfor-
mance of a system the most.

One difficult problem is the quantification of these transition
rates; if they are available, e.g. from measurement, they may only
be considered as estimates with their corresponding uncertainty.
Several approaches based on different techniques have been
considered to assess the effects of uncertainties in Markov models,
for example: Markov set-chains theory [6]; Linear programming
[7]; Imprecise theory [8]; Interval probabilities [9,10]; partial
derivatives [11,12], the Monte Carlo (MC) method [5], Interval
Arithmetic (IA) [13,14], and Affine Arithmetic (AA) [15].

In general, the interval widths derived using these approaches
can be used as an importance measure to rank transition rates
individually, by quantifying their effects on steady-state probabil-
ities for each possible system performance state. However, they do

not allow assessing the possible effects of interactions among
components' transition rates (e.g., the simultaneously effect of two
or more transition rates on steady-state probabilities).

Rocco and Zio [16] proposed the use of global sensitivity
analysis (SA) as an alternative approach for assessing transition-
rate importance in Markov models. These global methods evaluate
the effect of a factor while all others factors are varying as well,
thus allowing the exploration of the multi-dimensional input
space [17]. The uncertainty in the transition rates is considered
as a random variable modeled via a known probability density
function and then, specific SA techniques such as FAST [18] are
applied to evaluate their corresponding importance. However, one
of the main disadvantages of such methods is that they require
many evaluations (i.e., solving several linear systems of simulta-
neous equations).

To avoid the high computational cost, Rocco and Zio [19]
proposed the use of a special meta-model based on polynomial
chaos expansion (PCE) techniques. A PCE is a multi-dimensional
polynomial approximation of the model with coefficients deter-
mined by evaluating the model in a significantly reduced set
(when compared against traditional SA techniques) of predeter-
mined points. Importance index values are then derived directly
from the PCE.

Rocco and Ramirez-Marquez [20] proposed obtaining the
importance of the components in the reliability assessment of a
system, using an extension of the Unscented Transformation (UT)
technique. The approach requires evaluating a very small set of
models, linearly proportional to the number of components. In
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addition, the UT considers that model variables could be statisti-
cally depended (e.g., due to the presence of an external variable
that simultaneously affects a set of transition rates).

This paper extends the approach presented in Rocco and
Ramirez Marquez [20] for assessing the importance of the transi-
tion rate uncertainties in the evaluation of the steady-state
probability of Markovian behaved systems. To our knowledge, this
assessment has not been previously analyzed.

The remainder of this paper is organized as follows: Section 2
defines the Markov model to be considered. Section 3 reviews the UT
approach while Section 4 describes the approach to obtain importance
measures. Section 5 provides results of experimentation and Section 6
presents the main conclusions.

1.1. Acronyms, Notations and Assumptions

1.1.1. Acronyms

CTMC : continuous time Markov chain
IM : importance measure
pdf : probability density function
SA : sensitivity analysis
SR : state reduction algorithm

1.1.2. Notation

λij transition rate from state i to state j.
m number of state
Q transition rate matrix
n number of different transition rates
π steady-state probability vector (π1, π2, … πm)
πi steady-state probability of state i
Si main order sensitivity IM
STi total order sensitivity IM

1.1.3. Assumptions

1. The system is in steady-state.
2. Time between two successive failures and service time each

follows an exponential distribution, so failure rate and repair
rate are constant; the process is stationary.

3. The number of states in the Markov models is finite.
4. The Markov chain is aperiodic and irreducible.

2. Markov model

The transition of a system through different states that represent
different operational components states can be described by a
discrete-state, continuous time Markov chain (CTMC) Z¼{z(t),
tZ0}, with finite state space E¼{1,2,…, m}. For each i,jAE, let λij
be the transition rate from state i to state j and λii¼�Σia jλij, with
λii representing the principal diagonal of matrix Q, and defined as
the negative sum of transitional rates from j into i. Where Q is
defined as the m�m transition rate matrix and Pi(t) be the
probability that the system is in state i at time t. Pi(t) are obtained
by solving the matrix differential equation

_PðtÞ ¼ PðtÞQ

given the initial conditions for P(0).

Let π¼(π1, π2, …, πm) be the steady-state vector of Z. π can be
found by solving the following linear system [1]:

πQ ¼ 0Xm
i ¼ 1

πi¼ 1

8><
>: ð1Þ

Associated with each state of the CMTC is a performance level
of the system (or a reward rate). For example, in a two-state
model, one state may be related to the operating state with full
capacity and the other to a failed state with null capacity. States
with the same level of performance could be combined. The
probability of the combined states is defined as the sum of the
probability of the states to be combined.

Since the numerical values of πi depend on the values of the
elements of the transition rate matrix Q, it is clear that their
variations, due to uncertainty, will affect the value of probability
πi.

Fig. 1 shows the state space diagram for a one component
repairable system [1], where Λ is the failure rate and μ is the
repair rate.

The transitional rate matrix is

Q ¼
�Λ Λ
μ �μ

 !
ð2Þ

From (1) and (2) the steady-state probabilities πi, can be
obtained by solving the following linear systems:

�Λπ1þμπ2 ¼ 0

π1þπ2 ¼ 1 ð3Þ
The solution produces π1 ¼ μ=ðΛþμÞ and π2 ¼Λ=ðΛþμÞ that is,

each πis are non-linear functions of the transition rates. If Λ and/or
μ associated uncertainty is modeled as random variable then the
steady-state probability πiis also a random variable. Theoretically
the Q matrix is defined by (m2�m) transition rates, so the number
of factors to be varied is large, even for moderate values of m. This
value assumes that there are transition rates among all the states.
In general the number of different transition rates is smaller due to
some modeling assumptions, such as the existence of equal
components or no-common cause transitions, among others. In
this paper the number of different transition rates is defined as n.

The set of linear Eq. (1) could be solved by a classical decom-
position method (LDU) or by a Gauss–Seidel iterative method [21].
However, in this paper the State Reduction (SR) approach pro-
posed by Kumar and Billinton [22] is used. Their approach consists
on a stable algorithm to calculate steady-state probability using a
method that modifies the state transition matrix, reducing one
state per iteration, until the Markov system reduces to a 2-state
model. This method does not involve any subtraction so the errors
due to rounding or cancellation are minimized.

3. The unscented transformation

The UT uses the fact that it is “easier to approximate a
probability distribution than to approximate an arbitrary non-
linear function or transformation” [23].The approach is based on

Fig. 1. State space diagram for single component repairable system.
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