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a b s t r a c t

This paper proposes a new swarm intelligence method known as the Particle-based Simplified Swarm
Optimization (PSSO) algorithm while undertaking a modification of the Updating Mechanism (UM),
called N-UM and R-UM, and simultaneously applying an Orthogonal Array Test (OA) to solve reliability–
redundancy allocation problems (RRAPs) successfully. One difficulty of RRAP is the need to maximize
system reliability in cases where the number of redundant components and the reliability of
corresponding components in each subsystem are simultaneously decided with nonlinear constraints.
In this paper, four RRAP benchmarks are used to display the applicability of the proposed PSSO that
advances the strengths of both PSO and SSO to enable optimizing the RRAP that belongs to mixed-
integer nonlinear programming. When the computational results are compared with those of previously
developed algorithms in existing literature, the findings indicate that the proposed PSSO is highly
competitive and performs well.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

System reliability optimization has been a popular research
area that has received significant attention over the past several
decades [1–11] due to its critical importance in various types
of systems. It has been extensively used in many real-world
applications such as computer and communication systems,
power systems, and transportation systems [3–5,11]. Thus, system
reliability plays a very important role in modern society [1–11].

The main goal of reliability engineering is to increase system
reliability. In general, there are two methods that are used to
increase system reliability: the first increases the reliability of
components and the second uses redundant components within
subsystems. The use of redundant components in subsystems is
the direct and the most common method of enhancing system
reliability in industrial engineering activities. A majority of the
work in system reliability is devoted to solving redundancy
allocation problems (RAP) for which the decision variables are
redundancy levels that can be expressed as integer values [7,8,12].

A reliability–redundancy allocation problem (RRAP) is a clas-
sic optimization problem that seeks to maximize system relia-
bility through RAP [9]. To optimize a system RRAP, component
reliabilities are denoted as continuous values that fall between
zero and one, whereas redundancy levels are integer values.
Thus, RRAP is a mixed-integer programming approach with the

goal of maximizing system reliability under constraints such as
the system cost, weight, and volume.

Researchers have not only studied comprehensive RRAP-
related works, such as those of Kuo & Prasad and Kou et al.
[8,10], but have also focused on developing heuristic optimization
algorithms to optimize RRAP reliability. For example, the Artificial
bee colony algorithm [1], the Genetic algorithms [6,13,15], the Ant
system [14], the Immune algorithm [16,17], combinations of
several heuristics [10,18], and the Surrogate constraints algorithm
[2,19] have all been employed to address RRAP. In this RRAP-
related literature, a minority of the system reliability–redundancy
allocation problems have been subjected to linear constraints
[20,21], whereas the majority have been subjected to nonlinear
constraints [1,2,6,13,15–19,22].

RRAP has been developed with the consideration of various
approaches. However, RRAP is a powerful tool and a very impor-
tant technique for engineering systems. Thus, sustained progress
in optimization reliability via RRAP is an important goal.

The particle swarm optimization (PSO) algorithm developed by
Kennedy and Eberhard [23] and simplified swarm optimization
(SSO) algorithm developed by Yeh [24–27] are both population-
based stochastic optimization methods belonging to the category
of swarm intelligence methods; they are used to search for the
optimum in real numbers and in discrete numbers, respectively
[23–27]. Based on the strengths of both PSO and SSO, a novel
particle-based simplified swarm optimization algorithm that is
based on PSO and SSO is developed in this paper to optimize RRAP.
Thus, this study contributes to RRAP solutions by focusing on the
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Updating Mechanism (UM), called N-UM and R-UM, which
updates the variables of component numbers that are discrete
numbers and the variables of components reliabilities that are real
numbers, respectively. Furthermore, an Orthogonal Array Test (OA)
is implemented to efficiently determine the best combination of
the related parameters used in the UMs. The proposed PSSO
algorithm, along with the UMs and the OA, is then presented
and its effectiveness is demonstrated by considering four bench-
marks via mixed-integer programming with multiple nonlinear
constraints: a series system in benchmark 1, a network with series
and parallel elements in benchmark 2, a complex (bridge) system
in benchmark 3, and the overspeed protection of a gas turbine
system in benchmark 4 [1,17]. The related introduction of RRAP
programming, PSO, and SSO is outlined in the following sections.

Section 2 provides the definition of RRAP and its four bench-
marks. Section 3 presents an overview of PSO and SSO. Section 4
describes the N-UM, R-UM, and the proposed PSSO algorithm. An
orthogonal array test is presented in Section 5. A description of the
four benchmarks and the results of the experiments are demon-
strated in Section 6. Finally, the conclusions are presented in
Section 7.

2. Definition of RRAP and four benchmarks

RRAP has become an increasingly powerful tool in the initial
stages of the planning, design, and control of systems. The goal of

RRAP is to maximize overall system reliability by determining both
the number and reliability of components in each subsystem
under multiple nonlinear constraints. This problem can be cate-
gorized under mixed-integer nonlinear optimization and defined
as follows:

Maximize Rs ¼ f R;Nð Þ ð1Þ

Subject to gj R; Nð Þr lj

Notations

Nvar, Nsol, Ngen the number of subsystems in the system, solutions, and generations, respectively
N N¼(n1, n2,…,nNvar ) is the redundancy allocation vector of the system, where ni is the number of components in subsystem i

for i¼1,2,…,Nvar

R R¼(r1, r2,…,rNvar ) is the component reliability vector of the system, where ri is the reliability of each component in
subsystem i for i¼1,2,…,Nvar

Ri(ni), qi Ri(ni)¼1�qni
i is the reliability of subsystem i, where qi¼1�ri is the failure probability of each component in subsystem i for

i¼1,2,…,Nvar

Rs the system reliability
gj(R, N) the jth constraint function w.r.t. R and N
αi; βi the physical feature of each component in subsystem i for i¼1,2,…,Nvar

lj the resource limitation for the jth constraint function
vi, ci, wi the volume, cost, and weight of each component in subsystem i, respectively, i¼1,2,…,Nvar

V, C, W the upper limit on the volume, cost, and weight of the system, respectively
f(R, N) the fitness function w.r.t. R and N

Ngen
sol , n

gen
sol;var Ngen

sol ¼ðngen
sol;1;n

gen
sol;2;…;ngen

sol;NvarÞ is the redundancy allocation vector of the solth solution at the genth generation, where

ngen
sol;var is the varth variable for var¼1,2,…,Nvar

Rgen
sol , r

gen
sol;var Rgen

sol ¼ðrgensol;1; r
gen
sol;2;…; rgensol;NvarÞ is the component reliability vector of the solth solution at the genth generation, where rgensol;var

is the varth variable for var¼1,2,…,Nvar

Xgen
sol Xgen

sol ¼(Ngen
sol ,R

gen
sol ) is the solth solution at the genth generation

_nsol,
_ngBest the related pBest and gBest for the N-UM, e.g.,_nsol, is the pBest of the solth solution, and f(_ngBest) is the fitness value of the

gBest
_
Rsol,

_
RgBest the related pBest and gBest for the R-UM, e.g.,

_
Rsol, is the pBest of the solth solution, and f(

_
RgBest) is the fitness value of the

gBest
CUB, WUB VUB The upper bound of the required cost, weight, and volume, respectively
C, W, V the cost, weight, and volume, respectively
Rp penalized system reliability

Fig. 2. The network with series and parallel elements.

Fig. 1. The series system.
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