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a b s t r a c t

Dynamic reliability measures reliability of an engineered system considering time-variant operation
condition and component deterioration. Due to high computational costs, conducting dynamic reliability
analysis at an early system design stage remains challenging. This paper presents a confidence-based
meta-modeling approach, referred to as double-loop adaptive sampling (DLAS), for efficient sensitivity-
free dynamic reliability analysis. The DLAS builds a Gaussian process (GP) model sequentially to
approximate extreme system responses over time, so that Monte Carlo simulation (MCS) can be
employed directly to estimate dynamic reliability. A generic confidence measure is developed to evaluate
the accuracy of dynamic reliability estimation while using the MCS approach based on developed GP
models. A double-loop adaptive sampling scheme is developed to efficiently update the GP model in a
sequential manner, by considering system input variables and time concurrently in two sampling loops.
The model updating process using the developed sampling scheme can be terminated once the user
defined confidence target is satisfied. The developed DLAS approach eliminates computationally
expensive sensitivity analysis process, thus substantially improves the efficiency of dynamic reliability
analysis. Three case studies are used to demonstrate the efficacy of DLAS for dynamic reliability analysis.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Engineered systems generally degrade over time and could fail
due to time-variant operational conditions and component dete-
rioration, which may lead to catastrophic consequences such as
substantial economic and societal losses. To measure the perfor-
mance of engineered systems against potential system failures,
reliability is defined as the probability that the system or compo-
nent will perform the required function for a given period of time
under inherent uncertainties and certain operation conditions. In
the literature, two types of reliability analysis have been con-
ducted, referred to as static reliability analysis and dynamic
reliability analysis, depending on whether time-variant character-
istics are considered in reliability analysis processes.

To conduct static reliability analysis, various numerical meth-
ods, including both analytical and simulation-based approaches,
have been developed, such as most probable point (MPP) based
methods [1–3], dimension reduction method (DRM) [4–6], poly-
nomial chaos expansion (PCE) [7–10] and Kriging-based methods

[11–14]. In addition, studies have also been done to handle multi-
ply limit states [15,16] and epidemic uncertainty [17–19] in static
reliability analysis. In MPP-based methods such as the first order
reliability method (FORM), reliability index is calculated as the
distance between the MPP and the origin in the U-space by
iteratively locating MPP on the limit state function. Due to an
iterative MPP searching process, sensitivity information of perfor-
mance functions with respect to random variables is required in
order to pinpoint the next potential MPP point and carry forward
the searching process. However, accurate sensitivity information
of the performance function is usually not readily available in
practical engineering applications. The DRM simplifies a single
multi-dimensional integration for reliability analysis to multiple
one-dimensional integrations using an additive decomposition
formula, and then estimates reliability based on statistical
moments of system performance functions. Although it is a
sensitivity-free approach for reliability analysis, the DRM may
introduce significant error for limit state functions with high
nonlinearity. The PCE method constructs a stochastic response
surface with multi-dimensional polynomials over the sample
space of random variables, updates the stochastic response surface
by incorporating more samples and then approximates reliability
directly using Monte Carlo simulation (MCS) based on the devel-
oped stochastic response surface. The accuracy of the PCE can be
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improved by increasing the order of stochastic polynomial terms;
however, the computational cost can be prohibitively high for
problems with a large number of random input variables. Surro-
gate models have also been employed for reliability analysis to
replace original computationally expensive simulation models, so
that reliability can be approximated less expensively. For this type
of approaches, major challenges include proposing appropriate
metrics to quantify the accuracy of reliability estimation and
developing efficient sampling schemes for surrogate models.

Compared with static reliability analysis, performing dynamic
reliability analysis is even more computationally expansive in prac-
tical engineering applications, because of the time-dependency of
system failure events. In the literature, two categories of methods:
extreme performance based approaches [20–22,26] and first-passage
based approaches [23–25], have been developed for dynamic relia-
bility analysis. The extreme performance approaches define the
failure event according to extreme value of the performance function,
and then quantify uncertainty of the extreme performances in order
to approximate dynamic reliability. Instead of extreme performances,
first-passage based approaches focus on out-crossing events, when
the performance function exceeds the upper bound or falls below the
lower bound of the safety threshold, and estimate dynamic reliability
by computing an out-crossing rate measure. In the first category of
dynamic reliability methods, the composite limit state (CLS)
approach [26] has also been developed to tackle the time-
dependency issue and calculate the cumulative probability of failure
based on MCS. As the CLS converts the continuous time to discrete
time intervals and constructs a composite limit state by combining all
instantaneous limit states of discretized time intervals in a series
manner, it is extremely expensive to perform the dynamic reliability
analysis using the CLS, as illustrated by reported case studies [26].
Recently, the nested extreme response surface method (NERS) [22]
utilized the Kriging technique to efficiently identify extreme time
responses corresponding to extreme performances, so that dynamic
reliability can be performed by only focusing extreme events using
existing static reliability tools such as the FORM and MCS. Although
NERS can tackle the time-dependent issue efficiently, error can also
be induced by using FORM as a static reliability analysis tool. As a
representative of the first-passage methods, the PHI2 approach [27]
was developed for dynamic reliability estimation, in which the FORM
was also utilized to calculate out-crossing rates. Although static
reliability analysis tools such as FORM can be integrated with the
PHI2 method, the error of dynamic reliability estimation could be
very significant for two reasons: high nonlinearity of the limit states
and improper time step while discretizing the time variable. Another
limitation of PHI2 is that it requires accurate sensitivity information
of the performance function with respect to random input variables,
which is usually not available in practical engineering applications.

To handle time-dependency of system failure events and reduce
extremely high computational costs in dynamic reliability analysis, this
paper presents a confidence-based meta-modeling approach, referred
to as double-loop adaptive sampling (DLAS), for efficient sensitivity-
free dynamic reliability analysis. In order to evaluate dynamic relia-
bility directly by MCS, Gaussian Process (GP) regression is adopted to
construct a meta-model for extreme performance function over time
while the DLAS technique is developed to enhance the fidelity of meta-
model sequentially by considering the model input variables and time

concurrently in two sampling loops. The rest of paper is organized as
follows. Section 2 introduces dynamic reliability analysis and existing
methods. Section 3 details the developed DLAS approach for dynamic
reliability analysis. Three case studies are used to demonstrate the
effectiveness of the developed methodology in Section 4.

2. Review of dynamic reliability analysis

For engineered systems, system failure events occur if system
performance function goes beyond its failure thresholds. Conse-
quently, a limit state function, denoted as G(x)¼0, can be defined
which separates the safe and failure events in the random input
space. For static reliability analysis, the probability of failure is
defined as

Pf ¼ PrðGðxÞo0Þ ¼
Z

⋯
Z
GðxÞo0

f xðxÞdx ð1Þ

where fx(x) is the joint probability density function. However, the
performance function is also governed by the time-variant uncer-
tainties such as loading conditions and component deterioration.
Time parameter can be implicitly involved in the limit state
function when input random processes are taken into account. In
this work, we assume that the limit state function is an explicit
function of the random variable x and time parameter t. Thus, a
time-variant limit state function can be generally derived as G(x,
t)¼0 by taking the time parameter t into account in reliability
analysis. Let tl be the designed system life time of interest, the
probability of failure within [0, tl] can be described as

Pf 0; tlð Þ ¼ Pr (tA 0; tl½ �;G x; tð Þo0ð Þ ð2Þ

Thus, the task of dynamic reliability analysis is to estimate the
Pf in an efficient and accurate manner. The rest of this section
provides a brief review of three representative dynamic reliability
analysis approaches: the composite limit state (CLS) approach, the
nested extreme response surface (NERS) approach, and the out-
crossing rate approach.

2.1. Composite limit state approach

If the CLS is used, the time interval [0, tl] will be discretized to
NT time nodes with a fixed time step Δt. Let G(x, tn) ¼ 0 (n¼1,…,
NT) denotes the instantaneous limit state at the nth time node tn,
the composite limit state is defined as the union event of all
instantaneous limit states. The cumulative probability of failure
can then be described as

Pf ð0; tlÞ ¼ Pr [N
n ¼ 0Gðx; tnÞo0

� � ð3Þ

where failure occurs if any of the instantaneous limit states is
violated.

With the development of the composite limit state, dynamic
reliability can be estimated using existing static reliability analysis
tools; however, identifying composite limit states is computationally
very expensive because it requires evaluations of all instantaneous
performances for each design point. While using the CLS method,
time variable is discretized to simplify the dynamic reliability

Nomenclature

R reliability
Φ standard Gaussian cumulative distribution function
βt target reliability index
EI expected improvement

fx(x) probability density function
f( � | � ) conditional probability density function or likelihood

function
If indicator function
Pf probability of failure
vþ out-crossing rate
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