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were developed independently in many disciplines. We are strongly aware of the necessity to aggregate
all the good practices in each discipline, and compare the relative merits of each method, so as to

Available online 9 June 2015 instruct the practitioners to choose the optimal methods to meet different analysis purposes, and to

guide current research on VIA. To this end, all the good practices, including seven groups of methods, i.e.,

Keywords: the difference-based variable importance measures (VIMs), parametric regression and related VIMs,

Variable importance analysis
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nonparametric regression techniques, hypothesis test techniques, variance-based VIMs, moment-
independent VIMs and graphic VIMs, are reviewed and compared with a numerical test example set
in two situations (independent and dependent cases). For ease of use, the recommendations are

Variance-based provided for different types of applications, and packages as well as software for implementing these VIA
Moment-independent techniques are collected. Prospects for future study of VIA techniques are also proposed.

Graphic variable importance measures © 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Along with the rapid development of computer science and
technique, a variety of computational models and numerical simula-
tions have been developed for simulating and predicting the behavior
of systems in nearly all fields of engineering and science such as
aeronautical and astronautic engineering, chemistry and physics
science, environmental science and technology, economics and educa-
tion science. On the other hand, the last few decades have witnessed
an explosive increase of the data volume in all kinds of large-scale
scientific researches such as bioinformatics and related fields. To some
degree, researchers from almost all the fields have reached an
agreement on the necessity to perform variable importance analysis
(VIA) based on these computational models and measured data.
However, due to the wide dispersion of research fields and the lack
of communication among different fields, the methodologies for VIA
were independently developed in different research fields with
different terminologies. These good practices in different disciplines,
which will be reviewed in this article, are summarized in Fig. 1 with
classification.

Researchers and practitioners working on computational models
may face the problems of screening the relatively small group of
important input variables from the tremendous candidate input
variables (variable prioritization setting), fixing the large group of
non-influential input variables at their nominal values without affect-
ing the prediction accuracy or model output uncertainty (variable
fixing setting), and determining how a reduction of the uncertainty of
each input variable will influence the uncertainty in the output
variable (uncertainty reduction setting) [1]. One can refer to Ref. [2]
for an example of this type of analysis. VIA in these settings is mostly
termed as “sensitivity analysis (SA)” in literature, where the word

“sensitivity” used here is a general concept more related to “contribu-
tion” or “impact”, not just the partial derivative which is commonly
thought to be. This group of variable importance measures (VIMs)
developed for computational models includes the difference-based
VIMs, variance-based VIMs, moment-independent VIMs and the
graphic VIMs, as shown in Fig. 1. This group of VIA techniques can
also be termed as mathematical techniques.

In many disciplines such as bioinformatics, the objects oper-
ated by the analysts are measured data instead of computational
models, and the analysts want to find the input variables that have
obvious effect on the output variable based purely on data. This
type of analysis is often dealt by statistical techniques such as
measures of dependence, regression techniques and hypothesis
tests. The correlation coefficient (CC), partial correlation coefficient
(PCC), rank correlation coefficient (RCC), partial rank correlation
coefficient (PRCC) and the moment-independent VIMs are all
measures of dependence between the input and output variables.
The parametric and nonparametric regression techniques aim at
developing meta-model to approximate the true model response
function. These techniques measure the variable importance either
by the regression coefficients or by attributing the model output
variance explained by the regression model to each of the input
variables. The random forest, belonging to the group of nonpara-
metric regression techniques, can provide the analysts with
various types of VIMs, as indicated in Fig. 1. The hypothesis test
techniques aim at testing the strength of relationship between the
input and output variables, and use the probability-values
(p-values) as measures of variable importance.

The reviews for “SA” methods developed for computational
models are available in Refs. [3-12]. However, all these articles do
not include the best practice for correlated input variables and the
recently developed graphic VIMs. The reviews for statistical
techniques (also called sampling-based techniques) are available
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