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a b s t r a c t

Several researchers have worked on transmitting a given amount of flow through a network flow within
fastest possible time, allowing flow to be transmitted through one or more paths. Extending this
problem to the system reliability problem, the quickest path reliability problem has been introduced. The
problem evaluates the probability of transmitting some given amount of flow from a source node to a
sink node through a single minimal path in a stochastic-flow network within some specified units of
time. Later, the problem has been extended to allow flow to be transmitted through two or more
separate minimal paths (SMPs). Here, we consider the problem of sending flow through two SMPs with
budget constraint. Presenting some new results, an efficient algorithm is proposed to solve the problem.
The algorithm is illustrated through a benchmark ARPANET example. Computing complexity results, the
algorithm is shown to be significantly more efficient than the existing ones. We also state how the
optimal two SMPs with the best system reliability can be determined based on our proposed algorithm.
Finally, testing on more than 10 000 generated random test problems, the practical efficiency of our
algorithm is demonstrated in comparison with a recently proposed algorithm.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

After World War I, reliability was measured as the number of
accidents per hour of flight time for one-, two-, and four-engine
airplanes [1]. Nowadays, network reliability theory has extensively
been applied to a variety of real-world systems such as transpor-
tation [2], mobile ad hoc wireless [3,4], power transmission and
distribution [5,6], grid computing [7], manufacturing [8–10], and
computer and communication [9,11]. Moreover, in some optimiza-
tion problems such as maximizing system reliability [6,8] or
optimal design of a network subject to reliability constraint [12],
there is an increasingly significant need for efficiently computing
or estimating the system reliability. Thus, the system reliability
problem turns to be an important challenging problem for system
engineers. For example, to construct a manufacturing system, Lin
and Chang [10] exhibited each machine in the system by an arc
and each inspection station by a node, and evaluated its reliability
to produce d units of products with reworking actions, where d is a
given demand level of product. In this kind of a network, the flow
conservation law is not necessarily satisfied, i.e., the input and

output are not necessarily equal [8–10]. Applying approximate
methods such as Monte-Carlo simulation [4,13], or exact ones such
as inclusion–exclusion principle [14,15], or sum of disjoint product
[16,17], system reliability can be computed in terms of minimal
cuts, or minimal paths [1–30].However, evaluating the system
reliability is an NP-hard problem [30], and thus the problem
continues to be interesting to investigate.

In a logical topology of an optical network, each node exhibits a
destination, source (typically computers), or even an optical router,
and each arc denotes a light path. Since data can be carried out on
different wavelengths simultaneously, optical networks can be
considered as a stochastic-flow network (SFN) [31,32]. In an SFN,
system reliability can be considered as the probability of transmit-
ting a given demand amount, d units, of data (flow) from a source
node to a sink node [1–30]. A number of different algorithms have
been proposed to compute this kind of reliability parameter [3,13–
21]. For example, Yan and Qian [19] presented several new results
along with an improved algorithm. Forghani-elahabad and
Mahdavi-Amiri [21] proposed a new data structure and estab-
lished some new results to present a new efficient algorithm.
However, in an optical network, there are some time thresholds
and when the transmission time exceeds the threshold, the
transmission will be canceled, and so the transmission time is an
important issue to be considered. Attending to transmission time,
several studies have been made in terms of minimal paths
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according to the quickest path problem [23–27,33–38]. Quickest
path problem is a version of shortest path problem in a network
flow with arcs having two attributes, capacity and lead time [23–
27,33–38].Although the inception of the problem may be attrib-
uted to the work by Moore [23], however, the notion of quickest
path problem in our context has been introduced by Chen and
Chin [33]. The problem is finding a path to transmit d units of flow
from a source node to a sink node within a minimal transmission
time [23–27,33–38]. Mentioning and rectifying two existing dis-
advantages of the previous works, Park et al. [34] proposed a label-
setting algorithm to recognize the quickest path. Calvete et al. [35]
considered the proposed algorithms for the quickest path problem
without and with lower bound reliability constraints. Although the
time complexity of their algorithmwas the same as the one for the
algorithm in [34], they showed their algorithm to be better than
the proposed ones in [33,34] through numerical experiments.
Noticing the two disadvantages mentioned in [35], Sedeno-Noda
and Gonzalez-Barrera [36] pointed out a new drawback of the
proposed algorithms in the literature [33–35], posed as the need
for implicitly or explicitly enlarging the original given network.
Then, they proposed a completely new algorithm and showed it to
be more efficient than the existing algorithms [33–35] through an
extensive experiment involving some real networks such as USA
road networks. Shawi et al. [37] considered a transportation
network with each arc showing a road with its individual speed
and each node exhibiting an endpoint of a road or an intersection
between two roads. They considered the cost of moving along an
arc as the distance traversed along the arc times the weight of the
arc and found the cost of the quickest path in the network. Giani
and Guerriero [38] defined a function to obtain a lower bound for
the travel time from each node to every other one, and then
considered three large metropolitan networks to show the effec-
tiveness of their introduced lower bound.

From the viewpoint of quality of service, evaluating the ability of a
communication network to carry out the transmission requests within
a given time threshold is an important issue, and so considering an
SFN, Lin [25] extended the quickest path problem to the system
reliability problem and introduced quickest path reliability problem.
He proposed an algorithm to find all system state vectors by which d
units of flow can be transmitted through a single quickest path subject
to a time limitation T, and then computed system reliability using the
inclusion–exclusion principle [14,15]. Yeh and El Khadiri [26] used the
universal generating function method [29] to propose a new efficient
algorithm for solving the problem. They showed their algorithm to be
more efficient than the one proposed by Lin [25]. In addition to time,
cost is another important issue in evaluating the system reliability of
an SFN. Also, clearly the transmission time will be decreased when the
flow is transmitted through more than one minimal path. For this,
considering the budget limit, Lin [27] extended the problem to the
case of two separate minimal paths (SMPs) and evaluated the
probability of transmitting d units of flow through two SMPs from
the source node to the sink node satisfying time and budget limits.
Nevertheless, there is room for improvement upon the solution
methods for the 2 SMPs reliability problem. Here, we present some
new results and use them to propose an improved algorithm. We
show the algorithm to be more efficient than the recently presented
one in [27] on the basis of its complexity results and with respect to
the obtained numerical results in the sense of the performance profile
introduced by Dolan and More' [39].

The remainder of our work is organized as follows. In Section 2,
the required notations, nomenclature and assumptions are given.
Then, some new results are presented and an efficient algorithm
for the 2 SMPs reliability problem is proposed. This section also
illustrates the proposed algorithm through a benchmark ARPANET
example. Moreover, the algorithm is shown to be more efficient

than the existing ones based on time complexity in Section 2. We
explain how the system reliability can be computed employing the
proposed algorithm along with the sum of disjoint product
technique in Section 3. In Section 4, we make the efficiency
comparisons using the performance profile of Dolan and More'
[39] on the results obtained over randomly generated test pro-
blems. Section 5 provides our concluding remarks.

2. Basic results and the proposed algorithm

Here, we first state the required notations, nomenclature and
assumptions, and then present some new useful results. After-
wards, using the new results, an efficient algorithm is proposed for
the two separate paths reliability problem. We illustrate our
algorithm through a benchmark ARPANET example. We also show
our proposed algorithm to be more efficient than the existing ones
in terms of their computing complexities.

2.1. Notations, nomenclature and assumptions

Acronyms
SMPs separate minimal paths.
SFN stochastic-flow network.

Notations
n;m number of nodes and arcs, respectively.
G G¼ GðN;A; L;M;CÞ is a stochastic-flow

network, where N¼ f1;2;…;ng is the set of
nodes, A¼ fai j 1r irmg is the set of arcs,
L¼ ðl1; l2;…; lmÞ is a vector with li denoting
the lead time of arc ai, for 1r irm,
M ¼ ðM1;M2;…;MmÞ is a vector with Mi

denoting the max-capacity of arc ai, for
1r irm; C ¼ ðc1;…; cmÞ is a vector with ci
denoting the per unit transmission cost of
flow on arc ai, for 1r irm.

X X ¼ ðx1; x2;…; xmÞ is current system state
vector, where xi denotes the current capacity
of arc ai having a random value from
f0;1;…;Mig, for 1r irm.

b available budget for the network.
T time limit.
Pj jth SMP, for j¼ 1;2.
LPj lead time of Pj, for j¼ 1;2.
CPj transmission cost of Pj per unit of flow, for

j¼ 1;2.
KPj(X) capacity of Pj, for j¼ 1, 2, under system state

vector X.
d a non-negative random integer number

giving the required flow to be sent in the
network through two SMPs.

D D¼ ðd1; d2Þ is a policy vector with dj denoting
the amount of flow to be sent through Pj, for
j¼ 1;2.

FD FD¼ ðfd1; fd2Þ is the first obtained policy
vector.

λ number of all determined policy vectors.
r number of all determined policy vectors

satisfying the budget constraint.
φðPj; dj;XÞ time for transmitting dj units of flow

through Pj, for j¼ 1;2, under system state
vector X.

Γ Γ ¼ ðγ1; γ2Þ, where γj is the smallest possible
capacity of Pj for sending dj units of flow
through Pj within time T, for j¼ 1;2.
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