
An angle-based subspace anomaly detection approach
to high-dimensional data: With an application
to industrial fault detection

Liangwei Zhang n, Jing Lin, Ramin Karim
Division of Operation and Maintenance Engineering, Luleå University of Technology, 97187 Luleå, Sweden

a r t i c l e i n f o

Article history:
Received 11 February 2015
Received in revised form
17 April 2015
Accepted 30 May 2015
Available online 11 June 2015

Keywords:
Big data analytics
Anomaly detection
High-dimensional data
Fault detection

a b s t r a c t

The accuracy of traditional anomaly detection techniques implemented on full-dimensional spaces
degrades significantly as dimensionality increases, thereby hampering many real-world applications.
This work proposes an approach to selecting meaningful feature subspace and conducting anomaly
detection in the corresponding subspace projection. The aim is to maintain the detection accuracy in
high-dimensional circumstances. The suggested approach assesses the angle between all pairs of two
lines for one specific anomaly candidate: the first line is connected by the relevant data point and the
center of its adjacent points; the other line is one of the axis-parallel lines. Those dimensions which have
a relatively small angle with the first line are then chosen to constitute the axis-parallel subspace for the
candidate. Next, a normalized Mahalanobis distance is introduced to measure the local outlier-ness of an
object in the subspace projection. To comprehensively compare the proposed algorithm with several
existing anomaly detection techniques, we constructed artificial datasets with various high-dimensional
settings and found the algorithm displayed superior accuracy. A further experiment on an industrial
dataset demonstrated the applicability of the proposed algorithm in fault detection tasks and high-
lighted another of its merits, namely, to provide preliminary interpretation of abnormality through
feature ordering in relevant subspaces.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Increasing attention is being devoted to Big Data Analytics and its
attempt to extract information, knowledge and wisdom from Big
Data. In the literature, the concept of Big Data is mainly characterized
by the three “Vs” (Volume, Velocity and Variety) [1] together with “c”
to denote “complexity” [2]. High dimensionality, one measure of the
volume of data (the other measure being instance size) [3], presents
a challenge to Big Data Analytics in industry. For example, high
dimensionality has been recognized as the distinguishing feature of
modern field reliability data (incl. System Operating/Environmental

data, or SOE data), i.e. periodically generated large vectors of dynamic
covariate values [4]. Due to the “curse of dimensionality”, it has also
been regarded as the primary complexity of multivariate analysis and
covariate-response analysis in reliability applications [5,6].

Anomaly detection, also called outlier detection, aims to detect
observations which deviate so much from others that they are
suspected of being generated by different mechanisms [7]. Effi-
cient detection of such outliers can help, in a timely way, to rectify
faulty behavior of a system and, consequently, to avoid losses. In
view of this, anomaly detection techniques have been applied to
various fields, including industrial fault detection, network intru-
sion detection and so forth [8–10]. High dimensionality compli-
cates anomaly detection tasks because the degree of data
abnormality in relevant dimensions can be obscured or even
masked by irrelevant dimensions [5,11,12]. For instance, in an
industrial case (see Section 4.2), when detecting the fault “cavita-
tion” in a hydro-turbine, many irrelevant dimensions (e.g.
“hydraulic oil level” and “output power”) can easily conceal signals
relevant to this anomaly (e.g. “substructure vibration”) and
impede the discovery of the fault. Moreover, outliers are very
similar to normal objects in high-dimensional spaces from the
perspective of both probability and distance [5]. The use of
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traditional techniques to conduct anomaly detection in full-
dimensional spaces is problematic, as anomalies normally appear
in a small subset of all the dimensions.

Industrial fault detection aims to identify defective states of a
process in complex industrial systems, subsystems and components.
Early discovery of system faults may ensure the reliability and safety
of industrial systems and reduce the risk of unplanned breakdown
[13,14]. Fault detection is a vital component of an Integrated Systems
Health Management system; it has been considered as one of the
most promising applications wherein reliability meets Big Data [4].
From the data processing point of view, methods of fault detection
can be classified into three categories: (i) model-based, online, data-
driven methods; (ii) signal-based methods; and (iii) knowledge-
based, history data-driven methods [13]. Given the complexity of
modern systems, it is too complicated to explicitly represent the real
process with models or to define the signal patterns of the system
process. Thus, knowledge-based fault detection methods, which
intend to acquire underlying knowledge from large amounts of
empirical data, are more desirable than other methods [13]. Existing
knowledge-based fault detection methods can be further divided into
supervised and unsupervised ones, depending on whether the raw
data have been labeled or not, i.e. indicating whether the states of the
system process in historical data are normal or faulty. Generally,
supervised learning methods like Support Vector Machine (SVM),
Fuzzy C-Means (FCM), Artificial Neural Network (ANN), and several
others can provide reasonably accurate results in detecting or even
isolating the hidden faults [9,15]. However, when there is a lack of
sufficient labeled data, often the case in reality, fault detection must
resort to unsupervised methods. In unsupervised fault detection
methods, normal operating conditions are modeled beforehand, and
faults are detected as deviations from the normal behavior. A variety

of unsupervised learning algorithms have been adopted for this
purpose, such as Deep Belief Network, k Nearest Neighbors, and other
clustering-based methods [16,17], but few have tackled the challenges
of high-dimensional datasets.

Other types of Multivariate Statistical Process Control (MSPC)
methods, including Principle Component Analysis (PCA) and
Independent Component Analysis (ICA), have also been widely
used in fault detection [18,19]. But PCA-based models assume
multivariate normality of the in-control data, while ICA-based
models assume latent variables are non-Gaussian distributed
[20,21]. Both MSPC methods make strong assumptions about
the specific data distributions, thereby limiting their performance
in real-world applications [22]. Moreover, although PCA and ICA
can reduce dimensions and extract information from high-
dimensional datasets, their original purpose was not to detect
anomalies. Further research has confirmed PCA-based models are
not sensitive to faults occurring on the component level [23]. To
improve this, several studies have integrated MSPC methods with
assumption-free techniques, such as the density-based Local Out-
lier Factor (LOF) approach [22,24]. Though better accuracy has
been reported, LOF still suffers from the “curse of dimensionality”,
i.e. the accuracy of LOF implemented on full-dimensional
spaces degrades as dimensionality increases, as will be shown in
Section 4.1.

Although in many industrial applications for fault detection,
detecting anomalies from high-dimensional data remains rela-
tively under-explored, several theoretical studies (see Section 2 for
a review) have started to probe this issue, including, for example,
subspace anomaly detection by random projection or heuristic
searches over subspaces. These methods, however, are either
arbitrary in selecting subspaces or computationally intensive.

Nomenclature

X design matrix
m number of data points (rows) in X
n number of dimensions (columns) in X
N the set of feature space 1;…;nf g
LOS vector of local outlier scores
S matrix consists of the retained subspaces and local

outlier score on each retained dimension
i the ith data point (row) in X
j the jth element of a vector, or the jth dimension

(column) of a matrix, or the retained subspace
v vector representation of a point
p a data point (outlier candidate)
RP a set of reference points of a point
q data point represents the geometric center of all the

points in RPðpÞ
l line connected by two points (e.g. p and q)
NNk k nearest neighbor list of a point
SimSNN similarity value of two points derived by the

SNN method
SNNs s nearest neighbor list of a point derived by the

SNN method

PCos l
!

; μ!n jð Þ
� �

average absolute value of cosine between

line l and the jth axis in all possible combinations of
the two-dimensional spaces j; j�ð Þ, where j� AN\ j

� �
d number of retained dimensions of a point
G threshold for singling out large PCos values

The symbol ▢ denotes a placeholder.

Greek symbols

α acute angle between line l and x axis
β acute angle between line l and y axis
γ angle between a projected line and one of the axes in

the retained subspace
σ a row vector, containing the column-wise standard

deviation of the design matrix
ε a significantly small positive quantity
μ an axis-parallel unit vector
θ an input parameter for selecting relevant subspaces
Σ covariance matrix of a set of points

Accents

□ mean vector of a matrix
□! vector representation of a line

Superscripts

□n a normalized matrix (e.g. Xn)
□T transpose of a vector or a matrix
□�1 inverse of a matrix
□# a non-zero scalar quantity obtained by zero-value

replacement (e.g. l#j ¼ 10�5; if lj ¼ 0)
□� one of the remainder dimensions of the original

feature space excluding a specific dimension (e.g.
j� AN\ j

� �
)

□0 projection of point, set of points or line on the
retained subspace (e.g. RPðpÞ0)
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