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a b s t r a c t

In this paper, we propose a new way of looking at the reliability of a network using percolation theory. In
this new view, a network failure can be regarded as a percolation process and the critical threshold of
percolation can be used as network failure criterion linked to the operational settings under control. To
demonstrate our approach, we consider both random network models and real networks with different
nodes and/or edges lifetime distributions. We study numerically and theoretically the network reliability
and find that the network reliability can be solved as a voting systemwith threshold given by percolation
theory. Then we find that the average lifetime of random network increases linearly with the average
lifetime of its nodes with uniform life distributions. Furthermore, the average lifetime of the network
becomes saturated when system size is increased. Finally, we demonstrate our method on the
transmission network system of IEEE 14 bus.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In modern society, technological networks are pervasive as
they provide essential services including materials [1,2], energy
[3,4], information [5] and even social communication [6]. It is not
surprising, then, that network reliability is receiving particular
attention, on one side as a value requested by the users and on the
other side as a challenge for the service providers and network
operators. One way to address the problem is to consider the
structure connectivity of the network as a graph Γ (V, E) consisting
of a vertex set V¼{v1, v2,…, vn} and an arc set E¼{e1, e2,…, em}.
Within this abstraction, terminal reliability can be defined as the
probability of achieving connectivity from the source nodes to the
terminal nodes [7]. The terminal reliability of networks can be
characterized by assessment methodologies [8] such as Reliability
Block Diagram (RBD), Fault Tree Analysis (FTA) [9] and so on.
Typical algorithms for computing terminal reliability include the
state enumeration method [10], sum of disjoint products method
[11], factorization method [12], minimal cuts method [13] and
cellular automata [14,15].

However, in the consideration of terminal connectivity, the
identification of the operational limits of a network is missing [8],
where a critical fraction of functional components to sustain the

network is considered instead of studying paths in the terminal
reliability. Percolation theory [16,17] provides us with an oppor-
tunity to overcome this gap, by referring network failure to the
situation whereby a critical fraction of network components have
failed [18–20]. In the percolation theory, the failure of a node/edge
of network is modeled by removal. As the removal of nodes/edges
increases, the network undergoes a transition from the phase of
connectivity (functional network) to the phase of dis-connectivity
(nonfunctional network). The probability threshold signifying this
phase transition can be found theoretically or computed numeri-
cally by percolation theory. The probability threshold can be used
as a statistical indicator for the operational limits of the network,
which is not considered in traditional terminal reliability analysis.
Thus, percolation theory, based on statistical physics, can help to
understand the macroscopic failure behavior of networks in
relation to the microscopic states of the network components. It
can address questions of practical interest such as “how many
failed nodes/edges will break down the whole network?”

In this paper, we define “network reliability” by using concepts
of percolation theory and exploit the related statistical physics
techniques to calculate it. We analyze the network failure process
and network reliability properties by percolation theory, providing
a new framework for network reliability analysis. In Section 2, we
further explain the operational limits of a network. In Section 3,
we relate the network reliability problem to percolation theory. In
Section 4, we analyze theoretically the network reliability and
lifetime distribution, referring to random networks. In Section 5,
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we present simulation results, which are extended to real net-
works in Section 6.

To accompany the reader throughout the study of the paper, we
anticipate here a number of definitions:

Definition 1. Random Network (Erdӧs-Rényi (ER) Network [21]):
A graph with N vertices can have C2

N pairs at most. To generate a
random network, we first build N nodes. Then we connect each
pair of nodes with the same probability, p. In this way, a random
network (N, p) can be constructed finally and the networks will
become more connected with increasing p. Fig. 1 gives an example
of random network with N¼150, p¼1/75.

Definition 2. Degree of node i, ki: the number of links that belong
to node i. ok4: the average value of the degree, which is the sum
of node's degree divided by the number of nodes in the network.
In Fig. 1, the average degree of the network ok4¼2.

Definition 3. Cluster: a connected set of nodes, within which
there is a path between any pair of nodes. G represents the size of
the largest (giant) cluster in the network, while SG represents the
size of the second largest cluster. In Fig. 1, G is the cluster
consisting of the red nodes, and SG is the cluster consisting of
the blue nodes.

2. The operational limits of a network

Given a network such as communication networks or power
grid, many studies focused on the terminal reliability between pair
of nodes in the network. The terminal reliability includes the two-
terminal reliability, K-terminal reliability and all-terminal reliabil-
ity. These studies investigate the connectivity between the origin
and destination of a given pair from the viewpoint of
network users.

However, system operators cannot put all of the weight onto
the service quality of a single user or a portion of users, and rather
care about questions of practical interest such as “how many failed
nodes/edges will break down the whole network?” Accordingly,
we investigate the macroscopic status of network reliability by
defining “the operational limits of a network” in this manuscript.
When the classical methods of terminal reliability are implemen-
ted to answer above questions, the “combinatorial explosion”
problem [22,23] usually occurs when the number of possible
system states increases exponentially or even faster with the
system size. In an attempt to overcome the “combinatorial explo-
sion” problem in association with the assessment of network
reliability, we consider the phase transition threshold of the
network failure process as an indicator of network connectivity
loss, and use percolation theory to identify the critical point and
calculate reliability indexes correspondingly defined. Instead of
focusing on verifying the existence of paths connecting source and
target nodes, we study the network reliability in a system view.

Percolation theory has been widely applied in the field of
complex networks [18–20]. Based on this, many studies have
allowed revealing important network characteristics, including
vulnerability analysis of different types of complex networks.
Percolation actually describes a phase transition process of net-
work failure, whose critical point distinguishes the network from
connected to disconnected. Percolation theory makes use of
statistical physics principles and graph theory to analyze such
change in the structure of a complex network. Specific examples of
problems, which can be described and analyzed by percolation
theory, are the robustness of networks against random failures and
targeted attacks [24,25], the interdependent systems [26], the
spreading of infectious diseases [27].

3. Network reliability analysis based on percolation theory

In the following, by taking into account the lifetime of the
network nodes, we study how the global network connectivity
changes during a process of nodes and/or edges failure and
measure the network reliability Rs(t) and lifetime distribution
fs(t) as defined with respect to the critical point of the network
percolation process. Let R(t) be the probability that a node/edge is
functional at a given time t, i.e. the node/edge reliability at time t.
A fraction 1�p¼1�R(t) of nodes/edges will fail according to their
reliability and as the failure process proceeds, clusters of con-
nected nodes form as they are cut off from the main (giant)
network cluster (whose size is indicated as G). Then, as further
nodes/edges fail, the network gradually fragments into many finite
clusters. If R(t) is below a critical value pc, the main network cluster
does not exist anymore and only small isolated clusters exit: we
define the instant at which this occurs as the lifetime of the
network. With the network topology information, this critical
value pc can be calculated according to percolation theory
[18–20], which distinguishes the network from being connected
to disconnected.

Notation

V a set of vertices
E a set of arcs
Γ (V, E) a network defined as an undirected graph with V, E
N the total number of nodes in a network
Ci
N the binomial coefficient

oa4 the average value of the random variable a
p the probability that a node/edge is functional
pc the percolation threshold
Ts the average lifetime of the network
anb product of a and b
[a] the largest integer less than or equal to a

Fig. 1. Random Network with N¼150, ok4¼2. G is the cluster consisting of the
red nodes, and SG is the cluster consisting of the blue nodes. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)
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