Author's Accepted Manuscript

Optimal preventive maintenance and repair Policies for multi-state Systems

Shey-Huei Sheu, Chin-Chih Chang, Yen-Luan Chen, Zhe George Zhang

www.elsevier.com/locate/ress

PII: S0951-8320(15)00095-2

DOI: http://dx.doi.org/10.1016/j.ress.2015.03.029

Reference: RESS5277

To appear in: Reliability Engineering and System Safety

Received date: 23 April 2013 Revised date: 19 January 2014 Accepted date: 21 March 2015

Cite this article as: Shey-Huei Sheu, Chin-Chih Chang, Yen-Luan Chen, Zhe George Zhang, Optimal preventive maintenance and repair Policies for multistate Systems, *Reliability Engineering and System Safety*, http://dx.doi.org/10.1016/j.ress.2015.03.029

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Optimal Preventive Maintenance and Repair Policies for Multi-state Systems

Shey-Huei Sheu*, Chin-Chih Chang, Yen-Luan Chen, and Zhe George Zhang

Abstract

This paper studies the optimal preventive maintenance (PM) policies for multi-state systems.

The scheduled PMs can be either imperfect or perfect type. The improved effective age is

utilized to model the effect of an imperfect PM. The system is considered as in a failure state

(unacceptable state) once its performance level falls below a given customer demand level. If

the system fails before a scheduled PM, it is repaired and becomes operational again. We

consider three types of major, minimal, and imperfect repair actions, respectively. The

deterioration of the system is assumed to follow a non-homogeneous continuous time Markov

process (NHCTMP) with finite state space. A recursive approach is proposed to efficiently

compute the time-dependent distribution of the multi-state system. For each repair type, we

find the optimal PM schedule that minimizes the average cost rate. The main implication of

our results is that in determining the optimal scheduled PM, choosing the right repair type

will significantly improve the efficiency of the system maintenance. Thus PM and repair

decisions must be made jointly to achieve the best performance.

Keywords: Maintenance; Optimization; Reliability; Multi-state system; Non-homogeneous

*S.H. Sheu (Correspondence)

Department of Statistics and Informatics Science, Providence University, Taichung 433, Taiwan

Department of Industrial Management, National Taiwan University of Science and Technology, Taipei 106,

Taiwan

e-mail: shsheu@pu.edu.tw, shsheu@mail.ntust.edu.tw

C.C. Chang

Department of Chains and Franchising Management, Takming University of Science and Technology, Taipei

114, Taiwan

e-mail: ccchang@takming.edu.tw

Y.L. Chen

Department of Marketing Management, Takming University of Science and Technology, Taipei 114, Taiwan e-mail: clchen@takming.edu.tw

Z.G. Zhang

Department of Decision Sciences, Western Washington University, Bellingham, WA 98225-9077, USA

e-mail: George.Zhang@wwu.edu

1

Download English Version:

https://daneshyari.com/en/article/7195607

Download Persian Version:

https://daneshyari.com/article/7195607

<u>Daneshyari.com</u>