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a b s t r a c t

Mission reliability of a system depends on specific criteria for mission success. To evaluate the mission
reliability of some mission systems that do not need to work normally for the whole mission time, two
types of mission reliability for such systems are studied. The first type corresponds to the mission
requirement that the system must remain operational continuously for a minimum time within the
given mission time interval, while the second corresponds to the mission requirement that the total
operational time of the system within the mission time window must be greater than a given value.
Based on Markov renewal properties, matrix integral equations are derived for semi-Markov systems.
Numerical algorithms and a simulation procedure are provided for both types of mission reliability. Two
examples are used for illustration purposes. One is a one-unit repairable Markov system, and the other is
a cold standby semi-Markov system consisting of two components. By the proposed approaches, the
mission reliability of systems with time redundancy can be more precisely estimated to avoid possible
unnecessary redundancy of system resources.

& 2015 Published by Elsevier Ltd.

1. Introduction

In engineering applications, there exist many systems designed
to support the accomplishment of critical missions. For example,
during a space flight mission, it is necessary to use the spaceflight
telemetry, tracking, and control (TT&C) system [1] to provide
connection between the spacecraft and facilities on the ground,
and to ensure that the spacecraft performs its mission correctly.
Often, to avoid the risk of mission failure or waste of TT&C
resources, space system engineers are interested in quantitatively
assessing the mission reliability of the TT&C system which will
support a planned spaceflight, so they can make reasonable
decisions about the system design before practical execution of
the mission.

Mission reliability of a system is the probability of successful
completion of a stated mission by the system deployed in a given
environment. Depending on different criteria of mission success,
mission reliability may be defined more specifically. In some
engineering applications, a mission must be successfully accom-
plished within a given time interval. Taking TT&C systems as an
example, since the spacecraft orbits the earth, the time for which it

is passing overhead a ground facility is limited to a specific interval
(called the time window), so the facility can only provide TT&C
services within this time window. However, for the mission to be
successful, sometimes the system does not need to work normally
for the whole time window. In this paper, we identify two specific
cases. In the first case, to ensure mission success, the system needs
only to remain operational for a time period greater than a certain
value within the mission time window. For example, to accomplish
certain remote control instruction injection operations on a space-
craft, the ground facility only needs to function normally for a
short period of time while the spacecraft passes over. We call this
type of mission reliability, mission reliability of type I. In the second
case, we require that the total sum of the system's operational
periods within the given time window is greater than a given
value. We call the mission reliability of this kind mission reliability
of type II. For a TT&C system, if the mission is to transfer a certain
amount of onboard data, as long as the total sum of transmission
time is sufficient, the mission will be regarded as successfully
completed.

Although there are papers on mission reliability for special
systems of one mission phase [2,3], most existing literature on
mission reliability focuses on phased-mission systems (PMS) that
have multiple phases [4–6]. However, a commonly adopted
assumption in existing research work is that for the mission to
succeed in a phase, the system must remain operational through-
out the whole time of the phase [3,7]. Recent theoretical research
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work on PMS has mainly focused on two fields. One is on the
improvement of computational efficiency [8,9,7]; another is on
modelling and analysis methods of various kinds of PMS with
special features, such as demand-based PMS [10], PMS with
common-cause failures [11,12], propagated failures [13] and
imperfect coverage [14]. For the two cases considered in our
paper, if we apply the assumption that the system must remain
operational throughout the whole time of the phase, we can only
get a conservative estimate of the real mission reliability, because
the assumption is stricter than really necessary. This is only
acceptable if the mission time interval is short enough. For some
TT&C services, the required TT&C task time may be just several
minutes. For a low earth orbit (LEO) satellite, since the time of
passing overhead a ground station (i.e. the time window) is of
about the same magnitude, the errors due to such an assumption
are insignificant. However, for some medium earth orbit (MEO)
satellites or if inter-satellite links are used, the time window can
be as long as several hours and the adoption of this assumption in
mission reliability evaluation will unavoidably lead to serious
underestimation of the real value, and may result in unnecessary
redundancy in the deployment of expensive TT&C resources.
Therefore, more precise modelling and solution methods are
needed in such situations.

To the best of our knowledge, little previous research has been
done on these two types of mission reliability. The first type was
studied for the first time in [15], and a numerical method was
given for its calculation based on the probabilities of mission
success in mutually exclusive cases and order statistics. However,
in that paper the system under study was restricted to a one-unit
system with both exponential failure and repair times.

By a Markov system we mean a system whose behaviour can be
described by its state evolution over a time horizon, and at any
moment the future behaviour of the system, given its current
state, is independent of its past history. A semi-Markov system is a
generalization of a Markov system [16]. Compared with a Markov
system, the main feature of a semi-Markov system is that the time
required for each successive state transition can be a non-
exponential random variable, which may depend on both its
current state and the next state to be visited.

Whilst we believe our type I and type II mission reliability
measures to be novel, a similar measure has previously appeared
in the literature as interval reliability [17,18], remaining probability
[19] or interval availability [20]. Interval reliability is defined as the
probability that a system will work normally for a specific time
interval of given length without failure given that it begins to work
at a fixed start moment. Barlow gave a general formula for
computing interval reliability by use of a renewal property [18]
and obtained its limit solution as time tends to infinity. It has been
shown that for repairable semi-Markov systems, either a double
Laplace transform or an integral equation approach can be used to
obtain interval reliability [2]. For semi-Markov systems with
general state space (not limited to finite or countable state space),
in both continuous time and discrete time cases, Markov renewal
equations (MRE) can be built to give the formulae of interval
reliability and its limiting expression [20–22].

However, interval reliability is defined only for a fixed interval
time horizon, whereas our mission reliability of type I is defined
for a mission that can be executed in an interval that is not
prescribed prior to the mission, within a given mission time
window. Moreover, by definition, the meaning of interval relia-
bility is totally different from that of mission reliability of type II.

In this paper, we define two types of mission reliability.
Furthermore, for the general case of semi-Markov systems, by
the renewal property of semi-Markov processes, we derive matrix
integral equations and provide numerical algorithms for calculat-
ing these two types of mission reliability.

The remainder of this paper is organized as follows. Section 2
introduces the equations for sojourn time distributions of semi-
Markov systems, and gives numerical methods for their solution.
Section 3 establishes the integral matrix equations for mission
reliability of type I. Section 4 is devoted to mission reliability of
type II: a group of matrix integral equations is derived, and
algorithms are provided for their solution. Section 5 presents a
simulation procedure for estimating both types of mission relia-
bility for semi-Markov systems. Two numerical examples are
developed to verify our proposed analytical solution methods,
and the results are compared with simulation. In the last section,
some concluding remarks are given.

2. Sojourn time distributions

2.1. Semi-Markov systems

Suppose we have a systemwhose state changes only at discrete
time moments and takes values in a finite space S. Let Sn denote
the time of nth state transition, nZ0, and the corresponding state
of the system is Zn. Assume the sequence fðZn; SnÞ;nZ0g is a
Markov renewal sequence [23], define NðtÞ ¼ supfnZ0jSnrtg, then
the state of the system at time t will be YðtÞ ¼ ZNðtÞ, which is a
continuous time semi-Markov process (SMP) [23,24]. In this case,
the system is defined as a semi-Markov system.

For convenience, we will use Yt, Y to denote Y(t), fYt ; tZ0g
respectively in the sequel.

For any i; jAS, let

Kn
i;jðtÞ ¼ PfZnþ1 ¼ j; Snþ1�Snrt jZn ¼ ig:

In this paper, we only consider time-homogeneous semi-
Markov systems. So, we can define the semi-Markov kernel of Y
as Q ðtÞ ¼ ½qi;jðtÞ�, where

qi;jðtÞ ¼
K0
i;jðtÞ ia j

0 i¼ j

(
8 i; jAS ð1Þ

Notice that we assume that the system already has a minimal
representation [23], so all Markov renewal moments represent
real state transitions, which is why in Eq. (1) we define
qi;iðtÞ � 0; 8 iAS.

Suppose S is partitioned into U and D, where U is the set of up
states, in which the system is operational, and D is the set of down
states, in which the system has failed and is under repair. Hence
from a reliability point of view, the state of the system alternates
between U and D during system evolution.

For convenience, we will also use U;D to denote the tuples of
the corresponding sets of state:

U ¼ ðu1;u2;…;uj U j Þ
D¼ ðd1; d2;…; djDj Þ

where jU j ; jDj stand for the number of elements in the
corresponding sets .

2.2. Equations for sojourn time distributions

For later use, here we introduce the main results by Csenki
[2,25] about the sojourn time of a semi-Markov system before it
makes a state transition.

Let ku;dðtÞ denote the distribution function of the sojourn time
of the system holding in state uAU before first entering or re-
entering into down state dAD, and kd;uðtÞ denotes the distribution
function of the sojourn time of the system holding in state dAD
before first entering or re-entering up state uAU.
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