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a b s t r a c t

This paper proposes a Bayesian methodology to integrate model verification, validation, and calibration
activities for the purpose of overall uncertainty quantification in different types of engineering systems.
The methodology is first developed for single-level models, and then extended to systems that are
studied using multi-level models that interact with each other. Two types of interactions amongst multi-
level models are considered: (1) Type-I, where the output of a lower-level model (component and/or
subsystem) becomes an input to a higher level system model, and (2) Type-II, where parameters of the
system model are inferred using lower-level models and tests (that describe simplified components and/
or isolated physics). The various models, their inputs, parameters, and outputs, experimental data, and
various sources of model error are connected through a Bayesian network. The results of calibration,
verification, and validation with respect to each individual model are integrated using the principles of
conditional probability and total probability, and propagated through the Bayesian network in order to
quantify the overall system-level prediction uncertainty. The proposed methodology is illustrated with
numerical examples that deal with heat conduction and structural dynamics.

& 2015 Elsevier Ltd. All rights reserved.

1. Motivation

1.1. Introduction

Computational models are widely used for the analysis, design,
performance prediction and life cycle management of engineering
systems. The process of model development needs to ensure that
the models accurately represent the underlying scientific phenom-
enon. There are several activities in the development of a model
[1], and these activities can be grouped into five steps, as shown in
Fig. 1. Note that these steps are not necessarily in a fixed sequence;
different sequences might be suitable for different problems and
sometimes, iterations might be required between some of the
steps. Also, note that some of the activities separately delineated
by Alvin et al. [1] are collected together in order to facilitate the
objectives of the present paper.

The first step is to develop a conceptual model and construct a
mathematical equation (for e.g. a partial differential equation) that
represents the model output (y) as a function of inputs (x) and
model parameters (θ) as y¼ Gðx;θÞ. In the second step, a

numerical solution procedure is developed to solve the mathema-
tical equation, and this solution procedure is implemented using a
computer code. The output of this computer code is the model
prediction (yc ¼ Gcðx;θÞ); this yc may be different from y, the true
solution of the mathematical equation.

The third step is the process of model verification [2,3], which
includes both code verification (identification of programming
errors and debugging) and solution verification (convergence
studies, identifying and computing solution approximation errors).
Methods for code verification [4–9] and estimation of solution
approximation error [7,9–16] have been investigated by several
researchers. It is desirable to perform verification before calibration
and validation so that the solution approximation errors are
accounted for during calibration and validation. Solution approx-
imation errors in finite element analysis have been estimated
using a variety of techniques, such as convergence analysis [17], a
posteriori error estimation [18], and Richardson extrapolation
[16,19,20]. Another type of solution approximation error arises
when the underlying model is replaced with a surrogate model for
fast uncertainty propagation and/or model calibration. Many
surrogate modeling techniques have been developed, such as
regression models [21], polynomial chaos expansions [22], radial
basis functions [23] or Gaussian processes [24]. The quantification
of this surrogate model error is different for different types of
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surrogate models and the methods are well-established in the
literature.

The fourth step is model parameter estimation or model
calibration. The mathematical equation developed in the first step
contains some parameters, denoted by θ (for example, damping
coefficient in a differential equation governing plate deflection
under dynamic loading) and the values of these parameters for a
particular system may need to be estimated based on observed
input–output data. Least squares [25], likelihood-based [26,27],
and Bayesian [28–34] methods are available for model parameter
estimation. In classical statistics, the fundamental assumption is
that the parameter is a deterministic unknown quantity and it is
not meaningful to discuss the probability distribution of the
parameter; therefore, the uncertainty about the value of the
parameter is expressed in terms of confidence intervals. On the
other hand, the Bayesian approach attributes a probability dis-
tribution (prior and posterior) to the model parameters, and this
uncertainty is representative of the analyst's uncertainty about the
model parameter.

Having calibrated the model, the fifth step is model validation
which refers to the process of determining the degree to which a
model is an accurate representation of the real world from the
perspective of the intended use of the model [4,35]. In this regard,
researchers have been developing different types of validation
metrics that express the accuracy of a computational model
through comparison with experimental data, and determine
whether the model is adequate for its intended use (sometimes,
referred to as qualification [7]). Coleman and Stern [36] and
Oberkampf and Trucano [7] discussed several philosophical and
practical aspects of model validation, and provided guidelines for
conducting validation experiments and developing validation
metrics. Available approaches for quantitative model validation
are based on statistical confidence intervals [37], computing
distance between the model prediction and experimental data
by computing the area metric [9,38], normalizing residuals [39],
classical statistics-based hypothesis testing [40], Bayesian hypoth-
esis testing [41–45], and reliability analysis-based techniques [46–
48]. Liu et al. [49] and Ling and Mahadevan [50] investigated
several of these validation approaches in detail, and discussed
their practical implications in engineering. While some of these
approaches compute validation metrics, some other approaches
focus on directly estimating the so-called model form error [14,30]
as the difference between the model prediction and the under-
lying physical phenomenon the model seeks to represent. The
present manuscript mostly focuses on computing validation
metrics and does not explicitly compute the model-form error,
while performing validation. (However, the model form error can be
computed through the use of a discrepancy function in the
Kennedy O'Hagan framework for model calibration, but such an
analysis would have to be performed during the previous task of
calibration and not during validation.)

Another important issue related to model validation is the topic
of extrapolating the model to application conditions under which
experiments may not have been performed. Typically, there are
two types of extrapolation. The first type is where the model is

validated at certain input values, but prediction needs to be
performed at other input values that are not contained in the
validation domain. The second type of extrapolation is where
validation is performed using a simplified system (with restricted
features, physics, etc.) and the desired prediction is of the original
system. While regression-based techniques have been developed
for the first type of extrapolation [9], model extrapolation, in
general, is still a challenging issue and researchers are currently
studying this problem. This paper does not focus on the first type
of model extrapolation and primarily focuses on the integration of
results from verification, validation, and calibration activities; in
the process, some aspects of the second type of extrapolation are
discussed later in this paper.

1.2. Need for integration

While individual methods for calibration, verification, and
validation have been developed as mentioned above, it is not clear
how these activities can be integrated for the purpose of overall
uncertainty quantification in the model prediction. This is not
trivial because of several reasons. First, the solution approximation
errors calculated as a result of the verification process need to be
accounted for during calibration, validation, and prediction. Sec-
ond, the result of validation may lead to a binary result, i.e., the
model is accepted or rejected; however, even when the model is
accepted, it is not completely valid/correct. Hence, it is necessary
to account for the degree of correctness of the model, during
prediction and uncertainty quantification. Third, calibration and
validation are performed using independent data sets and it is not
straightforward to compute their combined effect on the overall
uncertainty in the system-level response.

The issue gets further complicated when the behavior of
complex engineering systems is studied using multiple
component-level and subsystem-level models that integrate to
form the overall multi-level system model. In each level, there is a
computational model with inputs, parameters, and outputs,
experimental data (hopefully available for calibration and valida-
tion separately), and several sources of uncertainty – physical
variability, data uncertainty (sparse or imprecise data, measure-
ment errors), and model uncertainty (parameter uncertainty,
solution approximation errors and model form error). In such a
multi-level system, the first task would be to connect all the
available models and associated sources of uncertainty.

Recent studies by the authors and coworkers [51,52] have
demonstrated that the Bayesian network methodology provides
an efficient and powerful tool to integrate multiple levels of
models, associated sources of uncertainty and error, and available
data at multiple levels. While the Bayesian approach can be used
to perform calibration and validation individually for each model
in the multi-level system, it is not straightforward to integrate the
information from these activities in order to compute the overall
uncertainty in the system-level prediction. This paper extends the
Bayesian approach to integrate and propagate information from
verification, calibration, and validation activities in order to quantify
the margins and uncertainties in the overall system-level predic-
tion. In Bayesian calibration, the goal is to estimate the probability
distributions of the underlying model parameters, using the data
available for calibration. Once the model is calibrated, it is validated
using an independent set of input–output data. There are several
advantages in using a Bayesian methodology for both calibration
and validation:

1. Both calibration and validation involve comparing model pre-
diction against experimental data; the Bayesian approach not
only allows the comparison of entire distributions of model
prediction and experimental data, but also provides a

Fig. 1. Stages in model development.
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