Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress

Safety and operational integrity evaluation and design optimization of safety instrumented systems

Fares Innal^{a,*,1}, Yves Dutuit^b, Mourad Chebila^a

^a Batna University, IHSI-LRPI, avenue Chahid Mohamed Boukhlouf, 05000 Batna, Algeria ^b TOTAL Professeurs Associés, 38, rue du Prieuré, 33170 Gradignan, France

ARTICLE INFO

Article history: Received 15 September 2013 Received in revised form 26 September 2014 Accepted 2 October 2014 Available online 13 October 2014

Keywords: Safety instrumented system (SIS) KooN architectures Safety integrity Operational integrity SIS optimization Genetic algorithms (GA)

ABSTRACT

The control of risks generated by modern industrial facilities could not be guaranteed without the use of safety instrumented systems (SIS). The failure of SIS to achieve their assigned functions could result in huge consequences with respect to both (i) the safety of the monitored system (relating to the SIS safety integrity) as well as (ii) its production availability due to false trips (relating to the SIS operational integrity). Furthermore, these two aspects are usually antagonistic. Therefore, the assurance of this double performance comes first by a thoughtful design of SIS. In that case, the aim of this paper is twofold. First, it focuses on the establishment of generic analytical formulations allowing the assessment of the SIS performance regarding safety integrity and operational integrity. Second, it deals with SIS architecture design optimization. The optimization problem is firstly addressed by a preliminary search for a balance between the above two quantities relying on the analysis of the structure of *KooN* architectures. Then, a more general and suitable approach based on genetic algorithms is proposed, where several performance indicators and the costs of purchase and maintenance are expected to be considered simultaneously. This general approach is illustrated through an application example.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Since the publication of the IEC 61508 standard devoted to functional safety [1] and its related sector based standards, such as the IEC 61511 for process safety [2], the interest in using certified safety instrumented systems (SIS) has considerably increased. These systems are usually the first layer of protection called upon to control potentially hazardous deviations of the monitored process, i.e. the equipment under control (EUC), and therefore to put it in a safe state. In general, a SIS is made up of the following three subsystems:

S (sensor): this is made up of a set of input elements (sensors, detectors, transmitters, etc.) which monitor the evolution of the parameters representing the process behaviour (temperature,

* Corresponding author. Tel.: +213 669290488.

E-mail address: innal.fares@hotmail.fr (F. Innal).

¹ Present address: Cité El Annabet, Béni-Béchir, Skikda 21000, Algeria.

pressure, flow, level, etc.). If at least one of these parameters exceeds a threshold level and remains there, this deviation constitutes the demand or solicitation emanating from the EUC.

LS (logic solver): includes a set of logic elements (e.g. Programmable Logic Controller or PLC) that collect information from the *S* subsystem and carries out the decision making process that may eventually end by activating the third subsystem.

FE (final element): this subsystem acts directly (emergency shutdown valves) or indirectly (solenoid valves, alarms) on the process in order to neutralize its deviation by generally putting it in a safe state, within a specified time which must be identified for each safety function.

The quantitative (probabilistic) evaluation of SIS performance is a paramount step for their validation as specified in the IEC 61508 standard. This validation is none other than the assurance that they can properly perform their assigned safety functions. The ability of SIS to meet a given safety target (tolerable risk level) is called "safety integrity", which is measured differently depending on the SIS modes of operation:

- Average probability of failure on demand (*PFD*_{avg}) for the "low demand" mode. This mode is typical for safety systems which are activated only on exceeding a threshold value (process upset).
- Probability of dangerous failure per hour (*PFH*) for the "high or continuous demand" mode. This mode of operation is typical of

Abbreviations: BPCS, basic process control system; CCF, common cause failures; DC, diagnostic coverage; EUC, equipment under control; FE, final element subsystem; GA, genetic algorithm; IEC, International Electrotechnical Commission; KooN, K out-of N; LOPA, layer of protection analysis; LS, logic solver subsystem; MDT, mean down time; MOP, multi-objective optimization problem; MRT, mean repair time; MT, mission time; MTTR, mean time to restoration; PFD, probability of failure on demand; PFH, probability of failure per hour; PFS, probability of failing safely; S, sensors subsystem; SIL, safety integrity level; SIS, safety instrumented system; STR, spurious trip rate; SOP, single-objective optimization problem

Nomenclature STR_{SIS} A_n^k number of arrangements of size k from a set with nelements C_n^k number of combinations of size k from a set with nelements C_P purchase cost C_P^{SIS} C_P^{max} C_T C_T^{SIS} C_T^{max} SIS purchase cost maximum allowed SIS purchase cost proof tests cost SIS proof tests cost maximum allowed SIS proof tests cost I_{Bi} *i*th component Birnbaum importance factor DC diagnostic coverage for dangerous failures DC_S diagnostic coverage for safe failures MDT_{KooN} mean down time for KooN architecture due to independent dangerous failures MDT_{sd} mean down time consecutive to a shutdown MDTS_{100i} mean down time for 100i architecture due to independent safe failures MTTR mean time to restoration for DD failures MTTR_s mean time to restoration for SD failures MRT mean repair time for DU failures MRT_{S} mean repair time for SU failures PFDavg average probability of failure on demand PFD^{SIS} avg SIS average PFD PFD_{avg}^{max} maximum allowed value for PFD_{avg}^{SIS} PFD for KooN architecture PFD_{Koon} PFD^{ind}_{KooN} independent PFD for KooN architecture PFD_{KooN}^{CCF} dependent PFD for KooN architecture (CCF contribution) **PFH**_{SIS} SIS probability of dangerous failure per hour (average) **PFH**_{max} maximum allowed value for PFH_{SIS} PFH for KooN architecture PFH_{KOON} PFH^{ind}_{KooN} independent PFH for KooN architecture PFH_{KooN}^{CCF} dependent PFH for KooN architecture (CCF contribution) PFSavg average probability of failing safely PFS_{Koon} PFS for KooN architecture

PFS_{KooN}^{ind}independent PFS for KooN architecturePFS_{KooN}^{CCF}dependent PFS for KooN architecture (CCF
contribution)

safety systems that have a permanent or regular operation (e.g. the basic process control system: BPCS).

Regarding the *PFH* concept, the first named authors of this paper have shown that it is the average failure frequency of the SIS. Also, they have conducted a detailed discussion on the aforementioned modes of operation [3,4].

In order to specify the requirements for a given SIS regarding the safety target, the IEC 61508 standard adopts the concept of safety integrity level (SIL) which is therefore a measure of the confidence with which the SIS can be expected to perform its intended safety function [5]. Table 1 shows the relationship between the above probabilistic performance (PFD_{avg} or PFH) and the SIL concept.

In addition to the requirements specified in the IEC 61508 standard, aiming to meet safety objectives (safety integrity), it is necessary to take into account any perturbation due to SIS failures on

the nominal operation of the EUC (even though it is safe). These disturbances are usually caused by nuisance tripping (false trip, spurious trip, spurious activation) of the SIS which result in production loss and thus are economically prejudicial, and potentially dangerous [6]. For instance see Ref. [7] for a detailed definition and discussion of terms and concepts related to spurious activation of a

Table 1	
Safety integrity levels (SIL) according to PFD_{avg} and PFH .	

SIL	PFD _{avg}	PFH (h^{-1})
4 3 2 1	$ \begin{split} &\geq 10^{-5} \text{ to } < 10^{-4} \\ &\geq 10^{-4} \text{ to } < 10^{-3} \\ &\geq 10^{-3} \text{ to } < 10^{-2} \\ &\geq 10^{-2} \text{ to } < 10^{-1} \end{split} $	$ \begin{split} &\geq 10^{-9} \text{ to } < 10^{-8} \\ &\geq 10^{-8} \text{ to } < 10^{-7} \\ &\geq 10^{-7} \text{ to } < 10^{-6} \\ &\geq 10^{-6} \text{ to } < 10^{-5} \end{split} $

STR _{max}	maximum allowed value for STR _{SIS}
STR _{KooN}	STR for KooN architecture
STR_{KooN}^{ind}	independent STR for KooN architecture
STR_{KooN}^{CCF}	dependent STR for KooN architecture (CCF
STR_{KooN}^{DDind}	contribution) STR for KooN architecture due to independent DD failures
STR_{KooN}^{DD} T_{1} W_{acc} W_{i} W_{IE} W_{S} W_{t} X_{i} $\beta_{DDI}(=\beta_{I}$ β_{SD} β_{SU} λ_{D}	STR for KooN architecture due to DD failures proof tests interval average accident frequency ith component failure frequency initiation event frequency system unconditional failure intensity (failure frequency) tolerable frequency ith decision variable CCF proportion (β factor)) β for dangerous undetected (DU) failures b) β for dangerous detected (DD) failures β for safe detected (SD) failures β for safe undetected (SU) failures dangerous failure rate
λ_{Dind}	independent dangerous failure rate
λ_{DD}	DD failure rate
λ_{DDind}	independent DD failure rate
λ_{DDCCF}	dependent DD failure rate
λ_{DU}	DU failure rate
λ_{DUind}	independent DU failure rate
ADUCCF	dependent DU failure rate
Λ_S	sale failure rate
۸ _{Sind}	dependent safe failure rate (CCE)
ASCCF	SD failure rate
ASD	independent SD failure rate
A SDind	dependent SD failure rate
A SDCCF	SU failure rate
Asilind	independent SU failure rate
A SUCCE	dependent SU failure rate
5000	•

SIS spurious trip rate (average)

Download English Version:

https://daneshyari.com/en/article/7195669

Download Persian Version:

https://daneshyari.com/article/7195669

Daneshyari.com