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a b s t r a c t

This paper presents a systemic decision approach with step-by-step procedures based on dynamic
Bayesian network (DBN), aiming to provide guidelines for dynamic safety analysis of the tunnel-induced
road surface damage over time. The proposed DBN-based approach can accurately illustrate the dynamic
and updated feature of geological, design and mechanical variables as the construction progress evolves,
in order to overcome deficiencies of traditional fault analysis methods. Adopting the predictive,
sensitivity and diagnostic analysis techniques in the DBN inference, this approach is able to perform
feed-forward, concurrent and back-forward control respectively on a quantitative basis, and provide
real-time support before and after an accident. A case study in relating to dynamic safety analysis in the
construction of Wuhan Yangtze Metro Tunnel in China is used to verify the feasibility of the proposed
approach, as well as its application potential. The relationships between the DBN-based and BN-based
approaches are further discussed according to analysis results. The proposed approach can be used as a
decision tool to provide support for safety analysis in tunnel construction, and thus increase the
likelihood of a successful project in a dynamic project environment.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Underground transportation systems are in great demand in
many large cities all over the world. The engineering design and
construction of railway tunnels below ground have been one of
the favorable options in urban transport development. In the past
ten years, tunnel construction has presented a powerful momen-
tum for rapid economic development worldwide. However, owing
to various risk factors in complex project environments, safety
violations occur frequently in tunnel construction, leading to large
problems on the surface transport operation. On July 6, 2010, a
tunnel collapse took place in Prague, Czech Republic, causing a 15-
meter-wide sunken pit to surface on the above road [1]. On August
23, 2012, a metro line leak caused chaos in Warsaw, Poland. Water
flooded into the tunnel at the planned Powisle station, causing
considerable transportation problems in the already gridlocked
city [2]. In China, the number of construction accidents showed a

rising trend in tunnel projects. On November 15, 2008, a fatal
tunnel collapse incident occurred a year after the start of Metro
Line One in Hanzhou Metro Construction, resulting in the deaths
of 21 people. The affected section by the collapse was 100 m long
by 50 m wide, and the depth of the crater was given as 6 m [3]. In
general, there steps up a public concern that tunnel construction
can generate ground displacements and deformations [4,5], which
may affect the safety performance of surface buildings and road
operations, and lead to unacceptable damages.

To avoid heavy casualties and property losses caused by safety
violations, innumerable studies have introduced risk-based analy-
sis into safety control. Risk analysis can be divided into qualitative
and quantitative risk analysis [6]. The former includes Fault Tree
Analysis (FTA), Comprehensive Fuzzy Evaluation Method (CFEM),
Safety Check List (SCL) and others; while the latter includes job
risk analysis method, influence diagrams, Neural Network (NN),
Support Vector Machine (SVM), decision trees and others. The
above risk-based analysis methods make a significant contribution
to safety management in complex engineering projects [7,8],
however, they are confined to static control management [9].
Khakzad and Khan [10] described FTA unsuitable for complex
problems due to its limitation in explicitly representing the
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dependencies of events, updating probabilities, and coping with
uncertainties. When associated parameters, such as geological,
design and construction parameters were changed, the aforemen-
tioned methods could not accurately illustrate the updated feature
of dynamic environments as the construction progress evolved.
Nor can professional supports or suggestions be provided in real
time as the parameters were updated.

In recent years, Bayesian network (BN) has been proposed to
model the complexity in man-machine systems [11], and is widely
used to implement uncertain knowledge representation and
reasoning [12,13]. However, in conventional BN-based analysis, it
is a static model representing a joint probability distribution at a
fixed point or a time interval. The dependencies among the
random variables are not presented when constructing the BN
model, leading to possible deviations between the predicted
results and those observed in reality [14]. Instead, a dynamic
Bayesian network (DBN) is a long-established extension of the
ordinary BN, and allows explicit modeling of changes over time.
Thus, DBN can therefore model the evolution of the probabilistic
dependencies within a random system. In general, use of BN and
DBN in engineering applications can speed up significantly nowa-
days [15]. Basically, both BN and DBN allow designers to easily
update the prediction when additional information is available,
and are especially suitable for engineering applications, where
statistical data is often sparse [14,16]. This paper therefore
attempts to use the DBN techniques to address the potential
uncertainty and randomness underlying the safety management
in tunnel construction. A systemic decision support approach
based on DBN is developed, aiming to provide guidelines for
dynamic safety analysis of the tunnel-induced road surface
damage over time. The proposed approach can be used to conduct
various analysis tasks, including predictive, sensitivity and diag-
nostic analysis. Finally, a case study concerning the dynamic safety
analysis in the construction of Wuhan Yangtze Metro Tunnel in
China is used to verify the applicability of the proposed DBN-based
approach. The relationships between the DNB-based and BN-
based approaches are further discussed according to the analysis
results.

This paper is organized as follows. Section 2 defines the
fundamental theory of BN and DBN. In Section 3, a decision
support approach with detailed step-by-step procedures is devel-
oped. In Section 4, the safety risk mechanism of the tunnel-
induced road surface damage is investigated, providing a basis
for the risk modeling and decision support. In Section 5, the
proposed approach is applied to dynamic safety analysis in a
tunnel case study. The conclusions are drawn in Section 6.

2. Methodology

2.1. Bayesian network

Bayesian network (BN), a combination of graph theory and
probability theory, consists of a directed acyclic graph (DAG) and
an associated joint probability distribution (JPD) [17]. A BN model
with N nodes can be represented as BoG, Θ4 , where G stands for
a DAG with N nodes, and Θ stands for the JPD of the BN model. The
nodes {X1,…,XN} in the graph are labeled by related random
variables. The direct edges between nodes present association
relationships among the variables. DAG contains conditional
independence assumptions, which can be modeled by means of
engineering models, expert judgment, or other known relations
[14]. The relations represented by DAG allow the JPD to be
specified locally by the conditional probability distribution for
each node. Assuming Pa(Xi) is the parent node of Xi in the DAG, the
conditional probability distribution of Xi is denoted by P(Xi|Pa(Xi)).

The JPD of P(X1,…,XN) can then be written as Eq. (1). Also, BN offers
advantages over alternative artificial intelligence (AI) approaches,
such as NN or fuzzy logic, due to its capability of handling
uncertainty in data [18]. Furthermore, BN allows not only a
forward (or predictive) analysis but also a backward (diagnostic)
analysis, where the posterior probability of any set of variables can
be computed.

P X1;…;XNð Þ ¼ ∏
Xi A X1 ;…;XNf g

P Xi Pa Xið Þ
��� � ð1Þ

2.2. Dynamic Bayesian network

Dynamic Bayesian network (DBN) extends the ordinary BN
formalism by introducing relevant temporal dependencies that
capture the dynamic behaviors of domain variables between
representations of the static network at different times [19,20].
Thus, DBN is more appropriate for monitoring and predicting
values of random variables, and capable of representing the
system state at any time with respect to BN [18]. A DBN model
is a way to extend BN to model probability distributions over
semi-infinite collections of random variables {X1, X2,…,XN}. Typi-
cally, we assume that each state only depends on the immediately
preceding state (i.e., the system is first-order Markov), and two
time slices are considered in order to model the system temporal
evolution. A DBN model represents a discredited Markov chain
process, and this form of DBN is usually called 2TBN (two time-
slice temporal Bayesian network) [19,21]. Accordingly, a DBN
model is defined to be a pair (B1, B-), where B1 is a BN model
that defines the prior P(Xt), and B- is a 2TBN which defines P(Xt|
Xt�1) by means of a transition probability table, as seen in Eq. (2).
Herein, Xi

t stands for the ith node at time t (i¼1, 2,…,N), and PaðXi
tÞ

stands for the parents of Xi
t in the directed acyclic graph.

P Xt jXt�1ð Þ ¼ ∏
N

i ¼ 1
PðXi

t jPaðXi
tÞÞ ð2Þ

The nodes in the first slice of a 2TBN do not have any
parameters associated with them, however, each node in the
second slice of the 2TBN has associated a conditional probability
distribution for variables which defines ∏N

i ¼ 1PðXi
t

���PaðXi
tÞÞ for all

t41 [22,23]. The distribution given by a 2TBN can be divided into
two aspects, namely (i) the inter-slice distribution that models the
probability of variables in Xt with parents at time t�1; and (ii) the
intra-slice distribution that models the probability of variable in Xt

with parents in the same time slice [24]. Generally, we assume
that the parameters of the conditional probability distribution are
time-invariant, and the model is time-homogeneous. The parents
of a node PaðXi

tÞ can either be in the same time slice or the
previous time slice [23]. The arcs between slices are from up to
down, reflecting the causal flow of time. If there is an arc from
Xi
t�1 to Xi

t , this node is called persistent. The arcs within a slice are
arbitrary, and one can put arcs in any way one wants to (i.e., their
relationships are unconstrained), as long as the intra-slice-model
is acyclic. In this paper, the parameters of the conditional prob-
ability distribution used by the proposed model are assumed time-
invariant. When we unroll the 2TBN until we have T time slices,
the resulting joint distribution probability can be defined by
Eq. (3).

P X1:Tð Þ ¼ ∏
T

t ¼ 1
∏
N

i ¼ 1
PðXi

t jPaðXi
tÞÞ ð3Þ

3. Development of a DBN-based decision support approach

Aiming to improve the effectiveness and accuracy of safety
management in complex project environments, a decision support
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