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a b s t r a c t

In this paper, we present an optimal preventive maintenance policy and develop a procedure for residual
life estimation for a slowly degrading system subject to soft failure and condition monitoring at
equidistant, discrete time epochs. An autoregressive model with time effect is considered to describe the
system degradation, which utilizes both the system current age and the previous state observations.
The class of control-limit maintenance policies with two different inspection strategies is considered,
and the optimization problem is formulated and solved in a semi-Markov decision process framework.
The objective is to minimize the long-run expected average cost. A formula for the mean residual life is
derived for the proposed degradation model and a control limit policy, which enables the estimation of
the remaining useful life and early maintenance planning based on the observed degradation process. An
example is presented to demonstrate the effectiveness of the proposed method.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The performance of engineering systems is usually affected by a
degradation process that occurs gradually over time. When the
system state defined by the degradation level reaches a predeter-
mined threshold, the system is no longer assumed to be able to
function satisfactorily or safely and it should be stopped and
replaced, although no physical failure is observed. This so-called
soft failure resulted from degradation might incur high costs (e.g.
due to production losses, quality decrease) and/or safety hazards
(e.g. the cracked structure can fail when the safety standard is
violated). For this reason, a preventive maintenance should be
performed before soft failure occurs which may be required by a
law and it typically has a higher economic and safety significance
than a corrective maintenance which only takes place when the
failure is observed. Many real systems are maintained periodically
applying an age-based or length-of-usage-based policy which can
be highly ineffective or hazardous, e.g. when applied to power
plants and civil structures such as bridges, tunnels, buildings,
etc. [17].

If the degradation state can be directly measured by discrete or
continuous condition monitoring, it is desirable to make the
maintenance decision based on the actual degradation state of
the system (see e.g. [1]). In this paper, we consider a system

subject to degradation and soft failure. The degradation process is
monitored through perfect inspections which fully reveal the
system condition. If the system’s degradation level identified by
inspection exceeds its failure threshold, a corrective replacement
is performed. The system will be preventively replaced if its
observed degradation state exceeds a pre-determined control limit
and it is left operational until next inspection if its degradation
level is below the control limit.

The essential part in analysis and computation of the optimal
maintenance policies for a degrading system is the degradation
modeling. The degradation process could be modeled by a
discrete-state or a continuous-state stochastic process, or by their
combinations. A three-state stochastic degradation model was
considered, e.g. by Makis [8], Kim et al. [6] and Wang [19]. Wang
[19] assumed arbitrary random sojourn times in each state in
order to cover a more general situation. It is true that degradation
analysis with Markovian assumption may suffer from some
limitations (Si et al. [15]), however, convenience from the model-
ing estimation and mathematical perspectives makes Markov and
semi-Markov processes still popular and prominent among degra-
dation models. The discrete states in Markovian-based models
could be representative of system degradation stages (Makis [8],
Kim et al. [6], Makis and Jiang [10], Zhou et al. [23], and Giorgio
et al. [4]), or represent the stochastic covariate values that directly
affect the degradation trend (Makis and Jardine [9], Zhao et al.
[22], Kharoufeh and Cox [5], Xiang et al. [20]). Makis and Jiang [10]
considered a discrete-continuous maintenance model based on a
continuous-time hidden Markov state process and a discrete
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observation process to deal with the real situation when the
condition-monitoring data is collected in discrete times but the
degradation process is continuous over time. In Zhou et al. [23],
continuous-state degradation process was first assumed. By Monte
Carlo-based density projection method, the infinite continuous
state space was mapped into a finite dimensional process of
“beliefs”, which were then used as discrete states in a Markov
decision process to determine the optimal maintenance policy. A
similar idea of using the Markovian degradation model to approx-
imate the continuous-state degradation process can be found in
Giorgio et al. [4]. Markovian-based models have also been used to
model the evolution of covariates in degradation processes (appli-
cations can be found in Makis and Jardine [9], Makis et al. [11],
Zhao et al. [22], Kharoufeh and Cox [5] and Xiang et al. [20]).

In contrast with discrete-state stochastic models, continuous-
state stochastic models assume that the evolution of degradation
states is continuous over time. In previous maintenance modeling
of degrading systems, path-dependent degradation models have
been commonly used, among which the age-dependent linear
path and the exponential path have been the most popular
assumptions for degradation trend (Wang [18], You et al. [21]).
Wang [18] derived an optimal control limit and monitoring
interval based on a linear degradation model with a Weibull-
based random-effect slope and an i.i.d. error term. You et al. [21]
used exponential degradation path for replacement decision mak-
ing, with both offline and real-time average system availability
optimization in one replacement cycle as an objective of main-
tenance control.

A combination of a Markov process and path-dependent
stochastic degradation models has also been considered recently
(see e.g. [3] and [2]). This modeling approach is also the inspiration
for our work. Elwany et al. [3] introduced an idea of modeling age-
dependent degradation model as a non-stationary Markov process
considering a structured replacement policy. The underlying age-
dependent degradation model is re-estimated at each inspection
by condition-monitoring information, and the maintenance policy
is optimized using a Markov decision process. Curcurù et al. [2]
described a degradation process by a first order autoregressive
model with drift, which then can be treated as a Markovian
degradation process.

In this paper, we will focus on developing a control-limit
optimal maintenance policy for a slowly degrading system based
on an autoregressive model with time effect. The degradation
trend in our proposed model is assumed to be dependent on the
previous state observation which is different from previously
considered age-dependent degradation models. This assumption
is more realistic and appropriate in many situations, for example,
the crack propagation rate will be higher when the current crack
length is larger. We add a time effect to an autoregressive model to
describe the influence of age on the degradation process. The
control limit as a preventive replacement threshold, the first
inspection time and the length of the subsequent regular inspect-
ing intervals are decision variables in our maintenance policy,
which will be determined by formulating and analyzing the
decision problem in a semi-Markov decision process framework.
The effectiveness of the proposed method will be demonstrated
using a real laser degradation data set coming from Meeker and
Escobar [12]. We note that the autoregressive model with the time
effect has not been considered before to model system degrada-
tion. Also, the calculation of the optimal control policies under
different inspection strategies and the derivation of the formulas
for the residual life estimation for this model are new and have not
appeared in the literature.

The rest of the paper is organized as follows. Section 2
introduces the degrading systems described by autoregressive
models with time effect. Section 3 develops the optimal

maintenance policy based on the proposed degradation model.
Comparison between the proposed maintenance policy and con-
ventional age-based maintenance policy is in Section 4. In Section
5, we develop the formulas for the estimation of the residual life of
the slowly degrading system using our proposed degradation
model and the control-limit policy illustrated by an example.
Conclusions and suggestions for future research are in Section 6.

2. Degrading systems described by autoregressive models with
time effect

We assume that the degradation state of the system can only be
known at discrete inspection times, which is the case in many real
applications. The degradation process starts from a known initial
state Y0 ¼ y0, and it is monitored through regular periodic inspec-
tions with inspection interval h. Let Yn denote the degradation
state observed at inspection time tn ¼ nh ðn¼ 1;2;3;…Þ. We
consider the following autoregressive model with time effect to
describe the degradation process:

Yn�δ0 ¼ βtnþ ∑
p

r ¼ 1
φr Yn� r�δ0

� �þεn; p¼ 0;1;2;…; n¼ 1;2;3;…

ð1Þ
where fεng are i.i.d. Nð0;σ2Þ. The model coefficients ðp;φr ; δ0;β;σ2Þ
are unknown and need to be estimated. We set δ¼ δ0�Σp

r ¼ 1φrδ0
and then write Eq. (1) in standard form:

Yn ¼ δþβtnþ ∑
p

r ¼ 1
φrYn� rþεn ; p¼ 0;1;2;…; n¼ 1;2;3;… ð2Þ

The estimation of the model coefficients starts with determin-
ing the model order p. Assume that we have M histories of the
system. For the l th data history, we denote the number of
inspections by ml, the observed system states by fy0; yl1;
yl2;…; ylml

g where y0 is the same for all histories, and the inspection
times by ftl1; tl2;…; tlml

g, l¼ 1;2;…;M. So that for the M observed
data histories, we have the regression representation W¼VAþE,
where

W0 ¼ ½yMmM
…yMp …y1m1

…y1p�
E0 ¼ ½εNmN

…εNp…ε1m1
…ε1p�

A0 ¼ δ β φ1 … φp

h i

V0 ¼

1 1 1 1
tMmN

tMp t1mM
t1p

yMmM�1 yN1 þM1
p�1 y1mM�1 y1p�1

⋮ ⋯ ⋮ ⋯ ⋮ ⋯ ⋮
yMmM�p y0 y1mM�p y0

2
66666664

3
77777775
: ð3Þ

The least squares estimate of A is given by (see e.g. Reinsel [13])

Â¼ ðV0VÞ�1V0W: ð4Þ
where T ¼ΣM

l ¼ 1ðml�pÞ is the total number of available observa-
tions of the degradation state.

The estimate of the model order pAN is obtained by testing
H0 : φp ¼ 0 against Ha : φpa0 and using the likelihood ratio
statistic given by

Dp ¼ �ðT�p�1�1=2Þln detðSpÞ
detðSp�1Þ

� �
: ð5Þ

where Sp ¼ ðW�V ÂÞ0ðW�VÂÞ is the residual sum of squares
matrix obtained from fitting the autoregressive model with time
effect of order pAN. For large T ¼ΣM

l ¼ 1ðml�pÞ, if φp ¼ 0, Dp

converges in distribution to the chi-square distribution with
1 degree of freedom (see e.g. Reinsel [13]). Thus, for significance
level αAð0;1Þ, we reject φp ¼ 0 if Dp4χ2

1;α .
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