
Computing derivative-based global sensitivity measures using
polynomial chaos expansions

B. Sudret n, C.V. Mai
ETH Zürich, Institute of Structural Engineering, Chair of Risk, Safety & Uncertainty Quantification, Stefano-Franscini-Platz 5, CH-8093 Zürich, Switzerland

a r t i c l e i n f o

Keywords:
Global sensitivity analysis
Derivative-based global sensitivity
measures (DGSM)
Sobol' indices
Polynomial chaos expansions
Derivatives of orthogonal polynomials
Morris method

a b s t r a c t

In the field of computer experiments sensitivity analysis aims at quantifying the relative importance of
each input parameter (or combinations thereof) of a computational model with respect to the model
output uncertainty. Variance decomposition methods leading to the well-known Sobol' indices are
recognized as accurate techniques, at a rather high computational cost though. The use of polynomial
chaos expansions (PCE) to compute Sobol' indices has allowed to alleviate the computational burden
though. However, when dealing with large dimensional input vectors, it is good practice to first use
screening methods in order to discard unimportant variables. The derivative-based global sensitivity
measures (DGSMs) have been developed recently in this respect. In this paper we show how polynomial
chaos expansions may be used to compute analytically DGSMs as a mere post-processing. This requires
the analytical derivation of derivatives of the orthonormal polynomials which enter PC expansions.
Closed-form expressions for Hermite, Legendre and Laguerre polynomial expansions are given. The
efficiency of the approach is illustrated on two well-known benchmark problems in sensitivity analysis.

& 2014 Published by Elsevier Ltd.

1. Introduction

Nowadays, the increasing computing power allows one to use
numerical models to simulate or predict the behavior of physical
systems in various fields, e.g. mechanical engineering [1], civil
engineering [2], chemistry [3], etc. The considered systems usually
lead to highly complex models with numerous input factors
(possibly tens to hundreds [4,5]) that are required to represent
all the parameters driving the system's behavior, e.g. boundary
and initial conditions, material properties, external excitations, etc.
In practice these input factors are often not perfectly known, since
they are obtained from possibly noisy measurements, or simply by
expert judgment. In order to take into account the uncertainty,
probabilistic approaches have been developed in the last two
decades, in which the model input parameters are represented by
random variables. Then the input uncertainties are propagated
through the computational model and the distribution, moments
or probability of exceeding prescribed thresholds may be com-
puted [6,7].

In this context, sensitivity analysis (SA) examines the sensitivity of
the model output with respect to the input parameters, i.e. how the
output variability is affected by the uncertain input factors [8–10].

The use of SA is common in various fields: engineering [2,11,1,12],
chemistry [3], nuclear safety [13], economy [14], biology [15], and
medicine [16], among others. One can traditionally classify SA into
local and global sensitivity analyses. The former aims at assessing the
output sensitivity to small input perturbations around a selected
reference value, e.g. the mean value of the input random vector, or
the so-called design point in reliability analysis [17]. The latter aims at
assessing the overall or average influence of input parameters onto
the output. Local SA has the disadvantage of being related to a fixed
nominal point in the input space, and the interaction between the
inputs is not accounted for [18]. In contrast, global SA techniques take
into account the input interactions and are not based on the choice of
a reference point but account for the whole input space, usually at a
larger computational cost though.

The most common sensitivity analysis methods found in the
literature are the method of Morris [19], FAST [20–22] and variance
decomposition methods originally investigated in [23–28]. Usually
standard Monte Carlo simulation (MCS) or quasi Monte Carlo (QMC)
techniques are employed for estimating the sensitivity indices in all
these approaches. This requires a large number of model evalua-
tions though, which becomes unaffordable when complex systems
are investigated. To overcome this problem, metamodels (also
called surrogate models or emulators) are usually used in order to
carry out the Monte Carlo simulation [29,30]. In particular, poly-
nomial chaos expansions (PCE) have been recognized as a versatile
tool for building surrogate models and for conducting reliability and
sensitivity analyses, as originally shown in [31–33]. Using PCE,
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variance-based sensitivity analysis becomes a mere post-processing
of the polynomial coefficients once they have been computed.

More recently, a new gradient-based technique has been proposed
for screening unimportant factors. The so-called derivative-based
global sensitivity measures (DGSM) are shown to be upper bounds of
the total Sobol' indices while being less computationally demanding
[34,35,18,36]. Although the computational cost of this technique is
reduced compared to the variance-based technique [18], its practical
computation still relies on sampling techniques, e.g. the Monte Carlo
simulation.

In this paper we investigate the potential of polynomial chaos
expansions for computing derivative-based sensitivity indices and
allow for an efficient screening procedure. The paper is organized
as follows: the classical derivation of Sobol' indices and their link
to derivative-based sensitivity indices is summarized in Section 2.
The machinery of polynomial chaos expansions and the link with
sensitivity analysis is developed in Section 3. The computation of
the DGSM based on PC expansions is then presented in Section 4,
in which an original method for computing the derivatives of
orthogonal polynomials is presented. Finally two numerical tests
are carried out in Section 5.

2. Derivative-based global sensitivity measures

2.1. Variance-based sensitivity measures

Global sensitivity analysis (SA) aims at quantifying the impact
of input parameters onto the output quantities of interest. One
input factor is considered insignificant (unessential) when it has
little or no effect on the output variability. In practice, screening
out the insignificant factors allows one to reduce the dimension of
the problem, e.g. by fixing the unessential parameters.

Variance-based SA relies upon the decomposition of the output
variance into contributions of different components, i.e. marginal
effects and interactions of input factors. Consider a numerical
model Y ¼MðXÞ where the input vector X contains M independent
input variables X ¼ fX1;…;XMg with uniform distribution over the
unit-hypercube H M and Y is the scalar output. The Sobol' decom-
position reads [23]:

Y ¼MðXÞ ¼M0þ ∑
M

i ¼ 1
M iðXiÞþ ∑

1r io jrM
M i;jðXi;XjÞ

þ⋯þM1;…;MðX1;…;XMÞ ð1Þ
in which M0 ¼ E MðXÞ½ � is a constant term and each summand
M i1 ;…;is ðXi1 ;…;Xis Þ is a function of the variables fXi1 ;…;Xis g; srM.
For the sake of conciseness we introduce the following notation
for the subset of indices:

u¼def fi1;…; isg ð2Þ
and denote by Xu the subvector of X that consists of the variables
indexed by u. Using this set notation, Eq. (1) rewrites:

Y ¼defM0þ ∑
u � f1;…;Mg

ua 0

MuðXuÞ; ð3Þ

in which MuðXuÞ is the summand including the subset of para-
meters Xu. According to [23], a unique decomposition requires the
orthogonality of the summands, i.e.:

E½MuðXuÞMvðXvÞ� ¼
Z
H M

MuðxuÞMvðxvÞ dx¼ 0; uav ð4Þ

In particular each summand shall be of zero mean value. Accord-
ingly the variance of the response Y ¼MðXÞ reads:

D¼defVar½Y� ¼ ∑
u � f1;…;Mg

ua 0

Var½MuðXuÞ�: ð5Þ

In this expansion Var½MuðXuÞ� is the contribution of summand
MuðXuÞ to the output variance.

The Sobol' sensitivity index Su for the subset of variables Xu is
defined as follows [24]:

Su ¼def
Du

D
¼ Var½MuðXuÞ�

D
ð6Þ

The total sensitivity index for subset Xu is given by [24]

STu ¼
defDT

u

D
¼ ∑

v*u

Var½MvðXvÞ�
D

ð7Þ

where the sum is extended over all sets v¼ fj1;…; jtg which
contains u. It represents the total amount of uncertainty appor-
tioned to the subset of variables Xu. For instance, for a single
variable Xi; i¼ 1;…;M the first order Sobol' sensitivity index reads:

Si ¼
Var½M iðXiÞ�

D
; ð8Þ

and the total Sobol' sensitivity index reads:

STi ¼ ∑
v3 i

Var½MvðXvÞ�
D

: ð9Þ

Si and Si
T respectively represent the sole and total effect of

the factor Xi on the system's output variability. The smaller Si
T is,

the less important the factor Xi is. In the case when STi 51, say

STi � 1–5%, Xi is considered as unimportant (unessential or insig-
nificant) and may be replaced in the analysis by a deter-
ministic value.

In the literature one can find different approaches for comput-
ing the total Sobol' indices, such as the Monte Carlo simulation
(MCS) and the spectral approach. Refs. [23,24] proposed direct
estimation of the sensitivity indices for subsets of variables using
only the model evaluations at specially selected points. The
approach relies on computing analytically the integral representa-
tions of Du and DT

u respectively defined in Eqs. (6) and (7).
Let us denote by u the set that is complementary to u,

i:e: X ¼ ðXu;Xu Þ. Let X and X 0 be vectors of independent uniform
variables defined on the unit hypercube H M and define
X 0 ¼ ðX 0

u;X
0
u Þ. The partial variance Du is represented as follows

[25]:

Du ¼∬MðxÞMðxu; x0u Þ dx dx0u �M2
0 ð10Þ

The total variance DT
u is given by [25]

DT
u ¼

1
2
∬ ½MðxÞ�Mðx0u; xu Þ�2 dx dxu ð11Þ

A Monte Carlo algorithm is used to estimate the above integrals.
For each sample point, one generates two M-dimensional samples
x¼ ðxu; xu Þ and x0 ¼ ðx0u; x0u Þ. The function is evaluated at three
points ðxu; xu Þ, ðx0u; xu Þ and ðxu; x0u Þ. Using N independent sample

points, one computes the quantities of interest D, Du and DT
u by

means of the following crude Monte Carlo estimators:

M0 ¼
1
N

∑
N

i ¼ 1
MðxðiÞÞ ð12Þ

DþM2
0 ¼

1
N

∑
N

i ¼ 1
½MðxðiÞÞ�2 ð13Þ

DuþM2
0 ¼

1
N

∑
N

i ¼ 1
MðxðiÞÞMðxðiÞu ; xðiÞ0

u
Þ ð14Þ

DT
u ¼

1
N

∑
N

i ¼ 1

1
2

MðxðiÞÞ�M xðiÞ0u ; xðiÞ
u

� �h i2
ð15Þ
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