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a b s t r a c t

Most studies on multi-state series–parallel systems focus on the static type of system architecture.
However, it is insufficient to model many complex industrial systems having several operation phases
and each requires a subset of the subsystems combined together to perform certain tasks. To bridge this
gap, this study takes into account this type of dynamic behavior in the multi-state series–parallel system
and proposes an analytical approach to calculate the system availability and the operation cost. In this
approach, Markov process is used to model the dynamics of system phase changing and component
state changing, Markov reward model is used to calculate the operation cost associated with the
dynamics, and universal generating function (UGF) is used to build system availability function from the
system phase model and the component models. Based upon these models, an optimization problem is
formulated to minimize the total system cost with the constraint that system availability is greater than
a desired level. The genetic algorithm is then applied to solve the optimization problem. The proposed
modeling and solution procedures are illustrated on a system design problem modified from a real-world
maritime oil transportation system.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The multi-state series–parallel system (MSSPS) is among the most
popular multi-state systems (MSS) being studied [21,16,33,1,38]. The
typical architecture of a MSSPS consists of N subsystems connected in
series, and in each subsystem si there are ni components connected
in parallel (see Fig. 1). Based on this general structure, most existing
studies on MSSPS optimization intend to optimize the types and the
numbers of the components in each subsystem [10,12]. One key
assumption of these studies is that the system topology remains
unchanged throughout the entire system life time.

Levitin et al. [22] proposed a recursive method for the exact
reliability evaluation of phased-mission systems consisting of non-
identical independent nonrepairable multistate elements. A struc-
ture optimization problem was also studied for a binary system
working in multiple phases [3]. Though phased-mission systems
can have different structures in different phase, the duration for
each phase is constant. In practice, a number of complex industrial
systems, such as oil transportation systems [35], shipping systems
[14], and railway transportation systems [43] have several opera-
tion phases with random duration, at each only a fraction of the

subsystems are operating to perform certain task. For instance,
Soszynska [35] described a real-world oil transportation system
with three pipeline subsystems connected in series to perform five
tasks; each involves at most three subsystems at operation. Fig. 2
depicts a few ‘snapshots’ of the operational phases of a MSSPS,
where an operation phase b is associated with a certain probability
representing the likelihood that the system remains at phase b
throughout its life time. It is seen that the stable structure in
Fig. 1 can be regarded as a special case (i.e. with all subsystems
functioning at all time) of the dynamic structure implied by Fig. 2.

At the component level, it is well known that the multi-state
components also exhibit dynamic behaviors. For example, the
multi-state components are often subject to aging process [12,28]
and maintenance activities [44]. These situations indicate
that component state probability is not always a constant
throughout time.

Moreover, the costs associated with the dynamics (both at
system level and component level) should also be considered in
the optimization problem. To the best of our knowledge, most
existing studies in this field compute the total system cost by
taking into account only the capital cost of the component, which
is the one-time expense to construct or purchase such component.
In practice, the operation cost is incurred by almost every type of
equipment (e.g. railways [42], telecommunication devices [13],
etc)—unless the equipment has no power/energy consumption,
does not deteriorate and thus requires no maintenance.
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To address the issues above, we propose an analytic approach that
combines Markov process to model the dynamics at both system
and component levels, the universal generating function (UGF) to
derive [39] the system availability function, and the Markov reward
model to compute the operation costs associated with system
dynamics. Based on this approach, an optimization problem is
formulated with the consideration of the availability of the system
and its operation costs. Though there are different approaches, such
as Pareto dominance [36,34,25] and weighted sum [7] to deal with
multi-objective optimization problems, an usual way is to optimize
one objective constrained by the other ones [5,23,30–32,41]. In
particular, this paper aims to minimize the total system cost with
the constraint that system availability is greater than a predeter-
mined level. In order to solve the optimization problem which is
combinatorial in nature, a genetic algorithm (GA) technique is
adopted. The rest of this paper is organized as follows: Section 2
develops the general model of the dynamic multi-state series–
parallel system (DMSSPS), derives the system availability function
and the system operation cost function. Section 3 presents the
optimization problem and the solution technique. Section 4 presents
a numeric example on oil transportation system design. Section 5
concludes this study and points out directions for future extensions.

2. General model of dynamic multi-state series–parallel
system

The assumptions of the DMSSPS are presented as follows:

� All components are statistically independent from each other.
This assumption appears in most previous multi-state relia-
bility/availability studies [16,17,36].

Acronyms

CDF cumulative distribution function
DMSSPS dynamic multi-state series–parallel system
GA genetic algorithm
MP Markov process
MRM Markov reward model
MSS multi-state system
MSSPS multi-state series–parallel system
PMF probability mass function
ROP redundancy optimization problem
UGF universal generating function

Notations

N total number of subsystems connected in series
si the set of components in the i-th subsystem
O total number of operation phases for MSS
Zb the set of the indexes of the subsystems involved in

operation phase b
Sb the set of subsystems involved in operation phase b
Gb system performance level at operation phase b
Wb system demand at operation phase b
S the set of all subsystems
ni total number of components in subsystem i
Ej transition rate matrix of component j
ℜj reward matrix of component j

pjkðtÞ probability of component j at state k at time t

pjðtÞ time dependent state probability vector of component j

vjkðtÞ expected total reward of component j at time t with
initial state at k

vjðtÞ the time dependent reward vector of component j

gjk performance level of component j at state k

ujðzÞ ¼∑Mj

k ¼ 0p
j
kðtÞzg

j
k the u-function representing the perfor-

mance distribution of component j
Mj the highest state of component j
uiðzÞ the u-function representing the performance distribu-

tion of subsystem i
ubðzÞ the u-function representing the whole system's the

performance distribution during phase b
gj performance vector of component j
Gj random performance rate of component j
φSð�Þ system structure function
�φ the UGF operator
Fs transition rate matrix of system level dynamics
pbðtÞ transient probability of system staying at operation

phase b
ASðtÞ system availability
Bi total number of component types available for sub-

system i
Ui maximum allowable number of components in sub-

system i
xij number of type j components in subsystem i
X system design vector ðx11; x12;…; x1B1 ;…; xN1; xN2;…; xNBN Þ
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Fig. 1. The classical structure of a multi-state series–parallel system.
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Fig. 2. Different operation phases of a MSSPS.
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